A210341 Triangle generated by T(n,k) = Fibonacci(n-k+2)^k.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 9, 8, 1, 1, 8, 25, 27, 16, 1, 1, 13, 64, 125, 81, 32, 1, 1, 21, 169, 512, 625, 243, 64, 1, 1, 34, 441, 2197, 4096, 3125, 729, 128, 1, 1, 55, 1156, 9261, 28561, 32768, 15625, 2187, 256, 1, 1, 89, 3025, 39304, 194481, 371293
Offset: 0
Examples
Triangle begins: 1 1, 1 1, 2, 1 1, 3, 4, 1 1, 5, 9, 8, 1 1, 8, 25, 27, 16, 1 1, 13, 64, 125, 81, 32, 1 1, 21, 169, 512, 625, 243, 64, 1 1, 34, 441, 2197, 4096, 3125, 729, 128, 1
Links
- Vincenzo Librandi, Rows n = 0..90, flattened
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
Programs
-
Magma
[Fibonacci(n-k+2)^k: k in [0..n], n in [0..10]]; /* Alternatively: */ [[Fibonacci(n-k+2)^k: k in [0..n]]: n in [0..8]]; // Bruno Berselli, Mar 28 2012
-
Mathematica
Flatten[Table[Fibonacci[n-k+2]^k,{n,0,20},{k,0,n}]]
-
Maxima
create_list(fib(n-k+2)^k,n,0,20,k,0,n);
Formula
G.f.: Sum_{k>=0} x^k/(1-Fibonacci(k+2)*x*y).
Comments