A210369 Number of 2 X 2 matrices with all terms in {0,1,...,n} and even determinant.
1, 10, 65, 160, 457, 810, 1681, 2560, 4481, 6250, 9841, 12960, 18985, 24010, 33377, 40960, 54721, 65610, 84961, 100000, 126281, 146410, 181105, 207360, 252097, 285610, 342161, 384160, 454441, 506250, 592321, 655360, 759425, 835210, 959617, 1049760
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
Programs
-
Mathematica
a = 0; b = n; z1 = 28; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, -n^2, n^2}] v[n_] := Sum[c[n, 2 k - 1], {k, -n^2, n^2}] Table[u[n], {n, 0, z1}] (* A210369 *) Table[v[n], {n, 0, z1}] (* A210370 *)
-
PARI
a(n) = {((n+1)^2 - ceil(n/2)^2)^2 + ceil(n/2)^4} \\ Andrew Howroyd, Apr 28 2020
Formula
a(n) + A210370(n) = n^4.
From Colin Barker, Nov 28 2014: (Start)
a(n) = (13 + 3*(-1)^n + 4*(13+3*(-1)^n)*n + 2*(37+7*(-1)^n)*n^2 + 4*(11+(-1)^n)*n^3 + 10*n^4)/16.
G.f.: -(x^7+9*x^6+27*x^5+83*x^4+59*x^3+51*x^2+9*x+1) / ((x-1)^5*(x+1)^4).
(End)
a(n) = ((n+1)^2 - ceiling(n/2)^2)^2 + ceiling(n/2)^4. - Andrew Howroyd, Apr 28 2020
Extensions
Terms a(29) and beyond from Andrew Howroyd, Apr 28 2020
Comments