A210442 Number of partitions of n into proper divisors of n, cf. A027751.
1, 0, 1, 1, 3, 1, 7, 1, 9, 4, 10, 1, 44, 1, 13, 13, 35, 1, 80, 1, 91, 17, 19, 1, 457, 6, 22, 22, 155, 1, 741, 1, 201, 25, 28, 25, 2233, 1, 31, 29, 1369, 1, 1653, 1, 336, 285, 37, 1, 9675, 8, 406, 37, 453, 1, 3131, 37, 3064, 41, 46, 1, 73154, 1, 49, 492, 1827
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 0..197 from Reinhard Zumkeller)
Programs
-
Haskell
a210442 n = p (a027751_row n) n where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-
Maple
with(numtheory): a:= proc(n) local b, l; l:= sort([(divisors(n) minus {n})[]]): b:= proc(m, i) option remember; `if`(m=0 or i=1, 1, `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) end; forget(b): b(n, nops(l)) end: seq(a(n), n=0..100); # Alois P. Heinz, Jan 29 2013
-
Mathematica
a[n_] := Module[{b, l}, l = Most[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0 || i==1, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0]=1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 02 2017, after Alois P. Heinz *)
Comments