cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210454 Cipolla pseudoprimes to base 2: (4^p-1)/3 for any prime p greater than 3.

Original entry on oeis.org

341, 5461, 1398101, 22369621, 5726623061, 91625968981, 23456248059221, 96076792050570581, 1537228672809129301, 6296488643826193618261, 1611901092819505566274901, 25790417485112089060398421, 6602346876188694799461995861
Offset: 1

Views

Author

Bruno Berselli, Jan 21 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

This is the case a=2 of Theorem 1 in the paper of Hamahata and Kokubun (see Links section).
Named after the Italian mathematician Michele Cipolla (1880-1947). - Amiram Eldar, Jun 15 2021

Crossrefs

Programs

  • Haskell
    a210454 = (`div` 3) . (subtract 1) . (4 ^) . a000040 . (+ 2)
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Magma
    [(4^NthPrime(n)-1)/3: n in [3..15]];
    
  • Maple
    P:=proc(q)local n;
    for n from 3 to q do print((4^ithprime(n)-1)/3);
    od; end: P(100); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    (4^# - 1)/3 & /@ Prime[Range[3, 15]]
  • Maxima
    Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$
    makelist((4^Prime(n)-1)/3, n, 3, 15);
    
  • PARI
    a(n)=4^prime(n+2)\3 \\ Charles R Greathouse IV, Jul 09 2015