A210454 Cipolla pseudoprimes to base 2: (4^p-1)/3 for any prime p greater than 3.
341, 5461, 1398101, 22369621, 5726623061, 91625968981, 23456248059221, 96076792050570581, 1537228672809129301, 6296488643826193618261, 1611901092819505566274901, 25790417485112089060398421, 6602346876188694799461995861
Offset: 1
Keywords
Links
- Bruno Berselli, Table of n, a(n) for n = 1..50
- Umberto Cerruti, Pseudoprimi di Fermat e numeri di Carmichael (in Italian), 2013. The sequence is on page 3.
- Michele Cipolla, Sui numeri composti P, che verificano la congruenza di Fermat a^(P-1) = 1 (mod P), Annali di Matematica, Vol. 9 (1904), pp. 139-160.
- Y. Hamahata and Y. Kokubun, Cipolla Pseudoprimes, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.6.
Programs
-
Haskell
a210454 = (`div` 3) . (subtract 1) . (4 ^) . a000040 . (+ 2) -- Reinhard Zumkeller, Jan 22 2013
-
Magma
[(4^NthPrime(n)-1)/3: n in [3..15]];
-
Maple
P:=proc(q)local n; for n from 3 to q do print((4^ithprime(n)-1)/3); od; end: P(100); # Paolo P. Lava, Oct 11 2013
-
Mathematica
(4^# - 1)/3 & /@ Prime[Range[3, 15]]
-
Maxima
Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$ makelist((4^Prime(n)-1)/3, n, 3, 15);
-
PARI
a(n)=4^prime(n+2)\3 \\ Charles R Greathouse IV, Jul 09 2015
Comments