cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210458 Expansion of q * (psi(-q^5) / psi(-q))^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 3, 6, 11, 16, 24, 38, 57, 82, 117, 168, 238, 328, 448, 614, 834, 1114, 1480, 1966, 2592, 3384, 4398, 5704, 7361, 9436, 12045, 15344, 19470, 24576, 30922, 38822, 48576, 60548, 75259, 93342, 115454, 142360, 175104, 214958, 263262, 321584, 391993, 476952
Offset: 1

Views

Author

Michael Somos, Jan 21 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			q + 2*q^2 + 3*q^3 + 6*q^4 + 11*q^5 + 16*q^6 + 24*q^7 + 38*q^8 + 57*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^k) * (1-x^(5*k)) * (1+x^(10*k)) / (1-x^(4*k)))^2,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    a[n_]:= SeriesCoefficient[(EllipticTheta[2, 0, I*q^(5/2)]/EllipticTheta[ 2, 0, I*Sqrt[q]])^2, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Dec 07 2017 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A)))^2, n))}

Formula

Expansion of (eta(q^2) * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4) * eta(q^10)))^2 in powers of q.
Euler transform of period 20 sequence [ 2, 0, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 2, 2, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 + u) * (1 + 5*u) * v * (1 + v) * (1 + 5*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is g.f. of A145740.
G.f.: x * (Product_{k>0} P(5, x^k) * P(20, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
A138519(n) = -(-1)^n * a(n). Convolution inverse of A145740.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Empirical: Sum_{n>=1} a(n)/exp(Pi*n) = -2/5 + (1/5)*sqrt(5). - Simon Plouffe, Mar 02 2021