A210489 Array read by ascending antidiagonals where row n contains the second partial sums of row n of Pascal's triangle.
1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 8, 7, 5, 1, 6, 12, 12, 9, 6, 1, 7, 17, 20, 16, 11, 7, 1, 8, 23, 32, 28, 20, 13, 8, 1, 9, 30, 49, 48, 36, 24, 15, 9, 1, 10, 38, 72, 80, 64, 44, 28, 17, 10, 1, 11, 47, 102, 129, 112, 80, 52, 32, 19, 11, 1, 12, 57, 140, 201, 192, 144, 96, 60, 36, 21, 12
Offset: 0
Examples
Table starts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 1, 4, 8, 12, 16, 20, 24, 28, 32, 36 1, 5, 12, 20, 28, 36, 44, 52, 60, 68 1, 6, 17, 32, 48, 64, 80, 96, 112, 128 1, 7, 23, 49, 80, 112, 144, 176, 208, 240 1, 8, 30, 72, 129, 192, 256, 320, 384, 448 1, 9, 38, 102, 201, 321, 448, 576, 704, 832 1, 10, 47, 140, 303, 522, 769, 1024, 1280, 1536 1, 11, 57, 187, 443, 825, 1291, 1793, 2304, 2816 1, 12, 68, 244, 630, 1268, 2116, 3084, 4097, 5120 1, 13, 80, 312, 874, 1898, 3384, 5200, 7181, 9217 1, 14, 93, 392, 1186, 2772, 5282, 8584, 12381, 16398 1, 15, 107, 485, 1578, 3958, 8054, 13866, 20965, 28779 1, 16, 122, 592, 2063, 5536, 12012, 21920, 34831, 49744 1, 17, 138, 714, 2655, 7599, 17548, 33932, 56751, 84575 1, 18, 155, 852, 3369, 10254, 25147, 51480, 90683, 141326 1, 19, 173, 1007, 4221, 13623, 35401, 76627, 142163, 232009 1, 20, 192, 1180, 5228, 17844, 49024, 112028, 218790, 374172 1, 21, 212, 1372, 6408, 23072, 66868, 161052, 330818, 592962 1, 22, 233, 1584, 7780, 29480, 89940, 227920, 491870, 923780 1, 23, 255, 1817, 9364, 37260, 119420, 317860, 719790,1415650 1, 24, 278, 2072, 11181, 46624, 156680, 437280,1037650,2135440 1, 25, 302, 2350, 13253, 57805, 203304, 593960,1474930,3173090 1, 26, 327, 2652, 15603, 71058, 261109, 797264,2068890,4648020 1, 27, 353, 2979, 18255, 86661, 332167,1058373,2866154,6716910 1, 28, 380, 3332, 21234, 104916, 418828,1390540,3924527,9583064
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Programs
-
PARI
T(n,m) = {sum(k=1, m, k*binomial(n,m-k))} { for(n=0, 10, for(m=1, 10, print1(T(n,m), ", ")); print) } \\ Andrew Howroyd, Apr 28 2020
Formula
T(n,k) = A193605(n,k).
T(n,m) = Sum_{k=1..m} k*binomial(n,m-k). - Vladimir Kruchinin, Apr 06 2018
Extensions
Offset corrected and terms a(55) and beyond from Andrew Howroyd, Apr 28 2020
Comments