cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210489 Array read by ascending antidiagonals where row n contains the second partial sums of row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 8, 7, 5, 1, 6, 12, 12, 9, 6, 1, 7, 17, 20, 16, 11, 7, 1, 8, 23, 32, 28, 20, 13, 8, 1, 9, 30, 49, 48, 36, 24, 15, 9, 1, 10, 38, 72, 80, 64, 44, 28, 17, 10, 1, 11, 47, 102, 129, 112, 80, 52, 32, 19, 11, 1, 12, 57, 140, 201, 192, 144, 96, 60, 36, 21, 12
Offset: 0

Views

Author

Jakub Jaroslaw Ciaston, Jan 23 2013

Keywords

Comments

Appears to be a transposed version of A188553 with a leading column of 1's.

Examples

			Table starts:
1,  2,   3,     4,      5,      6,      7,      8,      9,     10
1,  3,   5,     7,      9,     11,     13,     15,     17,     19
1,  4,   8,    12,     16,     20,     24,     28,     32,     36
1,  5,  12,    20,     28,     36,     44,     52,     60,     68
1,  6,  17,    32,     48,     64,     80,     96,    112,    128
1,  7,  23,    49,     80,    112,    144,    176,    208,    240
1,  8,  30,    72,    129,    192,    256,    320,    384,    448
1,  9,  38,   102,    201,    321,    448,    576,    704,    832
1, 10,  47,   140,    303,    522,    769,   1024,   1280,   1536
1, 11,  57,   187,    443,    825,   1291,   1793,   2304,   2816
1, 12,  68,   244,    630,   1268,   2116,   3084,   4097,   5120
1, 13,  80,   312,    874,   1898,   3384,   5200,   7181,   9217
1, 14,  93,   392,   1186,   2772,   5282,   8584,  12381,  16398
1, 15, 107,   485,   1578,   3958,   8054,  13866,  20965,  28779
1, 16, 122,   592,   2063,   5536,  12012,  21920,  34831,  49744
1, 17, 138,   714,   2655,   7599,  17548,  33932,  56751,  84575
1, 18, 155,   852,   3369,  10254,  25147,  51480,  90683, 141326
1, 19, 173,  1007,   4221,  13623,  35401,  76627, 142163, 232009
1, 20, 192,  1180,   5228,  17844,  49024, 112028, 218790, 374172
1, 21, 212,  1372,   6408,  23072,  66868, 161052, 330818, 592962
1, 22, 233,  1584,   7780,  29480,  89940, 227920, 491870, 923780
1, 23, 255,  1817,   9364,  37260, 119420, 317860, 719790,1415650
1, 24, 278,  2072,  11181,  46624, 156680, 437280,1037650,2135440
1, 25, 302,  2350,  13253,  57805, 203304, 593960,1474930,3173090
1, 26, 327,  2652,  15603,  71058, 261109, 797264,2068890,4648020
1, 27, 353,  2979,  18255,  86661, 332167,1058373,2866154,6716910
1, 28, 380,  3332,  21234, 104916, 418828,1390540,3924527,9583064
		

Crossrefs

Cf. A104734, A132379 (another transposed variant), A188553, A193605.

Programs

  • PARI
    T(n,m) = {sum(k=1, m, k*binomial(n,m-k))}
    { for(n=0, 10, for(m=1, 10, print1(T(n,m), ", ")); print) } \\ Andrew Howroyd, Apr 28 2020

Formula

T(n,k) = A193605(n,k).
T(n,m) = Sum_{k=1..m} k*binomial(n,m-k). - Vladimir Kruchinin, Apr 06 2018

Extensions

Offset corrected and terms a(55) and beyond from Andrew Howroyd, Apr 28 2020