cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210494 Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Bruno Berselli, Oct 03 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

Equivalently, numbers m such that ( m*sigma_0(m)+sigma_2(m) ) / (2*sigma_1(m)) = (A038040(m) + A001157(m))/A074400(m) is an integer.
All odd primes belong to the sequence. In fact, if p is an odd prime, (p*sigma_0(p)+sigma_2(p))/(2*sigma_1(p)) = (p+1)/2, therefore p is a biharmonic number.

Crossrefs

Cf. A001599 (harmonic numbers), A020487 (antiharmonic numbers), A038040 (n*sigma_0(n)), A001157 (sigma_2(n)), A074400 (2*sigma_1(n)), A230214 (nonprime terms of A210494).
Cf. A189835.

Programs

  • Haskell
    a210494 n = a210494_list !! (n-1)
    a210494_list = filter
       (\x -> (a001157 x + a038040 x) `mod` a074400 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    IsInteger := func; [n: n in [1..300] | IsInteger((n*NumberOfDivisors(n)+DivisorSigma(2,n))/(2*SumOfDivisors(n)))];
    
  • Maple
    with(numtheory); P:=proc(q) local a,k,n;
    for n from 1 to q do a:=divisors(n);
    if type((n*tau(n)+add(a[k]^2,k=1..nops(a)))/(2*sigma(n)),integer) then print(n); fi; od; end; P(1000); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    B[n_] := (n DivisorSigma[0, n] + DivisorSigma[2, n])/(2 DivisorSigma[1, n]); Select[Range[300], IntegerQ[B[#]] &]
  • PARI
    isok(n) = denominator((n*sigma(n,0) + sigma(n,2))/(2*sigma(n)))==1; \\ Michel Marcus, Jan 14 2016