A210503 Numbers k that form a primitive Pythagorean triple with k' and sqrt(k^2 + k'^2), where k' is the arithmetic derivative of k.
15, 35, 143, 323, 899, 1763, 3599, 4641, 5183, 10403, 11663, 13585, 19043, 22499, 32399, 35581, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 446641, 622081, 656099, 675683
Offset: 1
Keywords
Examples
m=57599, m'=480, sqrt(57599^2 + 480^2) = 57601.
Links
- Ray Chandler, Table of n, a(n) for n = 1..500 (terms 1..100 from Paolo P. Lava)
Programs
-
Maple
with(numtheory); A210503:= proc(q) local a,n,p; for n from 1 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if trunc(sqrt(n^2+a^2))=sqrt(n^2+a^2) and gcd(n,gcd(a,n^2+a^2))=1 then print(n); fi; od; end: A210503(100000);
-
Python
from math import sqrt from sympy import factorint from gmpy2 import mpz, is_square, gcd A210503 = [] for n in range(2, 10**5): nd = sum([mpz(n*e/p) for p, e in factorint(n).items()]) if is_square(nd**2+n**2) and gcd(gcd(n, nd), mpz(sqrt(nd**2+n**2))) == 1: A210503.append(n) # Chai Wah Wu, Aug 21 2014
Comments