cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210503 Numbers k that form a primitive Pythagorean triple with k' and sqrt(k^2 + k'^2), where k' is the arithmetic derivative of k.

Original entry on oeis.org

15, 35, 143, 323, 899, 1763, 3599, 4641, 5183, 10403, 11663, 13585, 19043, 22499, 32399, 35581, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 446641, 622081, 656099, 675683
Offset: 1

Views

Author

Paolo P. Lava, Jan 25 2013

Keywords

Comments

A037074 is a subsequence of this sequence.
If k is the product of a pair of twin primes we have k=p(p+2), k'=2(p+1) and sqrt(k^2+k'^2)=(p+1)^2+1=p(p+2)+2=k+2. These numbers are relatively prime and therefore they form a primitive Pythagorean triple.
Also in the sequence are the following numbers with four distinct prime factors:
4641 = 3*7*13*17 [form p(p+4)*q(q+4)],
13585 = 5*11*13*19 [form p(p+6)*q(q+6)],
35581 = 7*13*17*23 [form p(p+6)*q(q+6)],
446641 = 13*17*43*47 [form p(p+4)*q(q+4)],
622081 = 17*23*37*43 [form p(p+6)*q(q+6)],
700321 = 19*29*31*41 [form p(p+10)*q(q+10)],
From Ray Chandler, Jan 25 2017: (Start)
24887581 = 47*53*97*103 [form p(p+6)*q(q+6)],
43518577 = 59*67*101*109 [form p(p+8)*q(q+8)],
115539901 = 83*97*113*127 [form p(p+14)*q(q+14)],
158682817 = 89*101*127*139 [form p(p+12)*q(q+12)],
305162941 = 103*113*157*167 [form p(p+10)*q(q+10)],
1093514641 = 103*107*313*317 [form p(p+4)*q(q+4)],
1415940061 = 167*193*197*223 [form p(p+26)*q(q+26)].
And one term with six distinct prime factors:
650344079 = 7*11*37*53*59*73. (End)

Examples

			m=57599, m'=480, sqrt(57599^2 + 480^2) = 57601.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210503:= proc(q)
    local a,n,p;
    for n from 1 to q do
      a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
      if trunc(sqrt(n^2+a^2))=sqrt(n^2+a^2) and gcd(n,gcd(a,n^2+a^2))=1 then print(n); fi;
    od; end:
    A210503(100000);
  • Python
    from math import sqrt
    from sympy import factorint
    from gmpy2 import mpz, is_square, gcd
    A210503 = []
    for n in range(2, 10**5):
        nd = sum([mpz(n*e/p) for p, e in factorint(n).items()])
        if is_square(nd**2+n**2) and gcd(gcd(n, nd), mpz(sqrt(nd**2+n**2))) == 1:
            A210503.append(n) # Chai Wah Wu, Aug 21 2014