A210511 Primes formed by concatenating k, k, and 1 for k >= 1.
331, 661, 881, 991, 18181, 20201, 21211, 26261, 27271, 32321, 33331, 41411, 48481, 51511, 54541, 57571, 60601, 65651, 69691, 71711, 78781, 86861, 89891, 90901, 92921, 98981, 99991, 1041041, 1051051, 1131131, 1191191, 1201201, 1221221, 1231231, 1261261, 1281281
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[nn1: n in [1..130] | IsPrime(nn1) where nn1 is Seqint([1] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
-
Mathematica
Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {1}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *) With[{nn=200},Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Thread[ {Range[ nn],Range[nn],1}],PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)
-
Python
import numpy as np def factors(n): return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)) for i in range(1,2000): p1=int(str(i)+str(i)+"1") if len(factors(p1))<3: print(p1)
-
Python
from sympy import isprime from itertools import count, islice def agen(): yield from filter(isprime, (int(str(k)+str(k)+'1') for k in count(1))) print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022
Comments