cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210511 Primes formed by concatenating k, k, and 1 for k >= 1.

Original entry on oeis.org

331, 661, 881, 991, 18181, 20201, 21211, 26261, 27271, 32321, 33331, 41411, 48481, 51511, 54541, 57571, 60601, 65651, 69691, 71711, 78781, 86861, 89891, 90901, 92921, 98981, 99991, 1041041, 1051051, 1131131, 1191191, 1201201, 1221221, 1231231, 1261261, 1281281
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

This sequence is similar to A030458 and A052089.

Crossrefs

Programs

  • Magma
    [nn1: n in [1..130] | IsPrime(nn1) where nn1 is Seqint([1] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {1}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *)
    With[{nn=200},Select[FromDigits[Flatten[IntegerDigits[#]]]&/@Thread[ {Range[ nn],Range[nn],1}],PrimeQ]] (* Harvey P. Dale, Aug 17 2013 *)
  • Python
    import numpy as np
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
    for i in range(1,2000):
        p1=int(str(i)+str(i)+"1")
        if len(factors(p1))<3:
            print(p1)
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from filter(isprime, (int(str(k)+str(k)+'1') for k in count(1)))
    print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 26 2022