A210534 Primes formed by concatenating palindromes having even number of digits with 1.
331, 661, 881, 991, 12211, 14411, 15511, 20021, 21121, 23321, 24421, 29921, 33331, 35531, 41141, 45541, 47741, 50051, 51151, 57751, 59951, 63361, 71171, 72271, 74471, 75571, 81181, 84481, 99991, 1022011, 1255211, 1299211, 1311311, 1344311, 1355311
Offset: 1
Examples
a(18) = 50 concatenated with R(50)=05 concatenated with "1" = 50051, which is prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1452
Programs
-
Maple
fulldigRev := proc(n) local digs ; digs := convert(n,base,10) ; [op(ListTools[Reverse](digs)),op(digs)] ; end proc: for n from 1 to 150 do r := [1,op(fulldigRev(n))] ; p := add(op(i,r)*10^(i-1),i=1..nops(r)) ; if isprime(p) then printf("%d,",p); end if; end do: # R. J. Mathar, Feb 21 2013
-
Mathematica
10#+1&/@Select[Table[FromDigits[Join[IntegerDigits[n],Reverse[ IntegerDigits[ n]]]],{n,9999}],PrimeQ[10#+1]&](* Harvey P. Dale, Jul 06 2018 *) 10#+1&/@Select[Flatten[Table[Range[10^n,10^(n+1)],{n,1,5,2}]], PalindromeQ[ #] && PrimeQ[10#+1]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 11 2019 *)
Comments