A210586 Triangle T(n,k) read by rows: T(n,k) is the number of rooted hypertrees on n labeled vertices with k hyperedges, n >= 2, k >= 1.
2, 3, 9, 4, 48, 64, 5, 175, 750, 625, 6, 540, 5400, 12960, 7776, 7, 1519, 30870, 156065, 252105, 117649, 8, 4032, 154112, 1433600, 4587520, 5505024, 2097152, 9, 10287, 704214, 11160261, 62001450, 141363306, 133923132, 43046721, 10, 25500, 3025000, 77700000, 695100000, 2646000000, 4620000000, 3600000000, 1000000000
Offset: 2
Examples
Triangle begins .n\k.|....1.....2......3.......4.......5.......6 = = = = = = = = = = = = = = = = = = = = = = = = = ..2..|....2 ..3..|....3.....9 ..4..|....4....48.....64 ..5..|....5...175....750.....625 ..6..|....6...540...5400...12960....7776 ..7..|....7..1519..30870..156065..252105..117649 ... Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}. ........__________........................ ......./..........\.______................ ......|....1...../.\......\............... ......|.........|.3.|....4.|.............. ......|....2.....\./______/............... .......\__________/....................... .......................................... T(4,2) = 48. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges: {1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4}; {1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4}; {1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4}; {2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}. Choosing one of the four vertices as the root gives a total of 4x12 = 48 rooted hypertrees on 4 vertices.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- J. McCammond and J. Meier, The hypertree poset and the l^2-Betti numbers of the motion group of the trivial link, Mathematische Annalen 328 (2004), no. 4, 633-652.
Programs
-
Maple
with(combinat): A210586 := (n, k) -> n^k*stirling2(n-1, k): for n from 2 to 10 do seq(A210586(n, k), k = 1..n-1) end do; # Peter Bala, Oct 28 2015
-
PARI
T(n,k) = {n^k*stirling(n-1,k,2)} for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
Formula
T(n,k) = n^k*Stirling2(n-1,k). T(n,k) = n*A210587(n,k).
E.g.f. A(x,t) = t + 2*x*t^2/2! + (3*x + 9*x^2)*t^3/3! + ... satisfies A(x,t) = t*exp(x*(exp(A(x,t)) - 1)).
Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^k*k^(n-1)x^k/k!.
Row sums A035051.
The e.g.f. is essentially the series reversion of t/F(x,t) w.r.t. t, where F(x,t) = exp(x*(exp(t) - 1)) is the e.g.f. of the Stirling numbers of the second kind A048993. - Peter Bala, Oct 28 2015
Comments