cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210586 Triangle T(n,k) read by rows: T(n,k) is the number of rooted hypertrees on n labeled vertices with k hyperedges, n >= 2, k >= 1.

Original entry on oeis.org

2, 3, 9, 4, 48, 64, 5, 175, 750, 625, 6, 540, 5400, 12960, 7776, 7, 1519, 30870, 156065, 252105, 117649, 8, 4032, 154112, 1433600, 4587520, 5505024, 2097152, 9, 10287, 704214, 11160261, 62001450, 141363306, 133923132, 43046721, 10, 25500, 3025000, 77700000, 695100000, 2646000000, 4620000000, 3600000000, 1000000000
Offset: 2

Views

Author

Peter Bala, Mar 26 2012

Keywords

Comments

A hypergraph H is a pair (V,E) consisting of a finite set V of vertices and a set E of hyperedges given by subsets of V containing at least two elements. A walk in a hypergraph H connecting vertices v0 and vn is a sequence v0, e1, v1, e2, ... , v(n-1), en, vn, where each vi is in V and each ei is in E and for each ei the set {v(i-1),vi} is contained in ei. If for every pair of vertices v and v0 there is a walk in H starting at v and ending at v0 then H is called connected. A walk is a cycle if it contains at least two edges, all of the ei are distinct and all of the vi are distinct except v0 = vn. A connected hypergraph with no cycles is called a hypertree. A rooted hypertree is a hypertree in which one particular vertex is selected as being the root. For the enumeration of unrooted hypertrees see A210587.

Examples

			Triangle begins
.n\k.|....1.....2......3.......4.......5.......6
= = = = = = = = = = = = = = = = = = = = = = = = =
..2..|....2
..3..|....3.....9
..4..|....4....48.....64
..5..|....5...175....750.....625
..6..|....6...540...5400...12960....7776
..7..|....7..1519..30870..156065..252105..117649
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 48. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
Choosing one of the four vertices as the root gives a total of 4x12 = 48 rooted hypertrees on 4 vertices.
		

Crossrefs

Cf. A035051 (row sums). Cf. A210587, A048993.

Programs

  • Maple
    with(combinat):
    A210586 := (n, k) -> n^k*stirling2(n-1, k):
    for n from 2 to 10 do seq(A210586(n, k), k = 1..n-1) end do;
    # Peter Bala, Oct 28 2015
  • PARI
    T(n,k) = {n^k*stirling(n-1,k,2)}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018

Formula

T(n,k) = n^k*Stirling2(n-1,k). T(n,k) = n*A210587(n,k).
E.g.f. A(x,t) = t + 2*x*t^2/2! + (3*x + 9*x^2)*t^3/3! + ... satisfies A(x,t) = t*exp(x*(exp(A(x,t)) - 1)).
Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^k*k^(n-1)x^k/k!.
Row sums A035051.
The e.g.f. is essentially the series reversion of t/F(x,t) w.r.t. t, where F(x,t) = exp(x*(exp(t) - 1)) is the e.g.f. of the Stirling numbers of the second kind A048993. - Peter Bala, Oct 28 2015