cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210587 Triangle T(n,k) read by rows: T(n,k) is the number of unrooted hypertrees on n labeled vertices with k hyperedges, n >= 2, 1 <= k <= n-1.

Original entry on oeis.org

1, 1, 3, 1, 12, 16, 1, 35, 150, 125, 1, 90, 900, 2160, 1296, 1, 217, 4410, 22295, 36015, 16807, 1, 504, 19264, 179200, 573440, 688128, 262144, 1, 1143, 78246, 1240029, 6889050, 15707034, 14880348, 4782969, 1, 2550, 302500, 7770000, 69510000, 264600000, 462000000, 360000000, 100000000
Offset: 2

Views

Author

Peter Bala, Mar 26 2012

Keywords

Comments

See A210586 for the definition of a hypertree and for the enumeration of rooted hypertrees.

Examples

			Triangle begins
.n\k.|....1.....2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = =
..2..|....1
..3..|....1.....3
..4..|....1....12.....16
..5..|....1....35....150....125
..6..|....1....90....900...2160...1296
..7..|....1...217...4410..22295..36015..16807
...
Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}.
........__________........................
......./..........\.______................
......|....1...../.\......\...............
......|.........|.3.|....4.|..............
......|....2.....\./______/...............
.......\__________/.......................
..........................................
T(4,2) = 12. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges:
{1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4};
{1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4};
{1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4};
{2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
		

Crossrefs

Cf. A030019 (row sums). Cf. A210586, A048993.

Programs

  • Maple
    with(combinat):
    A210587 := (n, k) -> n^(k-1)*stirling2(n-1, k):
    for n from 2 to 10 do seq(A210587(n, k), k = 1..n-1) end do;
    # Peter Bala, Oct 28 2015
  • Mathematica
    T[n_, k_] := n^(k - 1)*StirlingS2[n - 1, k];
    Table[T[n, k], {n, 2, 10}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    T(n,k) = {n^(k-1)*stirling(n-1,k,2)}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018

Formula

T(n,k) = n^(k-1)*Stirling2(n-1,k). T(n,k) = 1/n*A210586(n,k).
E.g.f.: A(x,t) = t + x*t^2/2! + (x + 3*x^2)*t^3/3! + ..., where t*d/dt(A(x,t)) is the e.g.f. for A210586.
Dobinski-type formula for the row polynomials: R(n,x) = exp(-n*x)*Sum_{k = 0..inf} n^(k-1)*k^(n-1)x^k/k!.
Row sums A030019.