A210587 Triangle T(n,k) read by rows: T(n,k) is the number of unrooted hypertrees on n labeled vertices with k hyperedges, n >= 2, 1 <= k <= n-1.
1, 1, 3, 1, 12, 16, 1, 35, 150, 125, 1, 90, 900, 2160, 1296, 1, 217, 4410, 22295, 36015, 16807, 1, 504, 19264, 179200, 573440, 688128, 262144, 1, 1143, 78246, 1240029, 6889050, 15707034, 14880348, 4782969, 1, 2550, 302500, 7770000, 69510000, 264600000, 462000000, 360000000, 100000000
Offset: 2
Examples
Triangle begins .n\k.|....1.....2......3......4......5......6 = = = = = = = = = = = = = = = = = = = = = = = ..2..|....1 ..3..|....1.....3 ..4..|....1....12.....16 ..5..|....1....35....150....125 ..6..|....1....90....900...2160...1296 ..7..|....1...217...4410..22295..36015..16807 ... Example of a hypertree with two hyperedges, one a 2-edge {3,4} and one a 3-edge {1,2,3}. ........__________........................ ......./..........\.______................ ......|....1...../.\......\............... ......|.........|.3.|....4.|.............. ......|....2.....\./______/............... .......\__________/....................... .......................................... T(4,2) = 12. The twelve unrooted hypertrees on 4 vertices {1,2,3,4} with 2 hyperedges (one a 2-edge and one a 3-edge) have hyperedges: {1,2,3} and {3,4}; {1,2,3} and {2,4}; {1,2,3} and {1,4}; {1,2,4} and {1,3}; {1,2,4} and {2,3}; {1,2,4} and {3,4}; {1,3,4} and {1,2}; {1,3,4} and {2,3}; {1,3,4} and {2,4}; {2,3,4} and {1,2}; {2,3,4} and {1,3}; {2,3,4} and {1,4}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
- J. McCammond and J. Meier, The hypertree poset and the l^2-Betti numbers of the motion group of the trivial link, Mathematische Annalen 328 (2004), no. 4, 633-652.
Programs
-
Maple
with(combinat): A210587 := (n, k) -> n^(k-1)*stirling2(n-1, k): for n from 2 to 10 do seq(A210587(n, k), k = 1..n-1) end do; # Peter Bala, Oct 28 2015
-
Mathematica
T[n_, k_] := n^(k - 1)*StirlingS2[n - 1, k]; Table[T[n, k], {n, 2, 10}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
-
PARI
T(n,k) = {n^(k-1)*stirling(n-1,k,2)} for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
Comments