cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210589 Numbers which, when divided by their first digit, have their last digit as remainder.

Original entry on oeis.org

10, 20, 21, 30, 31, 32, 40, 41, 42, 43, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 210, 211, 220, 221, 230, 231, 240, 241
Offset: 1

Views

Author

Eric Angelini (idea) and M. F. Hasler, Mar 23 2012

Keywords

Comments

Coincides with A071590 up to the 79th term, A071590(79)=310 is not in this sequence.
Charles R Greathouse IV observes that this is an automatic sequence in the terminology of Allouche & Shallit.
See A210582 for the obvious "symmetric" counterpart: first digit = x mod last digit. - M. F. Hasler, Jan 14 2014

Programs

  • Magma
    [ n: n in [1..249] | n mod d[#d] eq d[1] where d is Intseq(n) ]; // Bruno Berselli, Mar 23 2012
    
  • Mathematica
    ldrQ[n_]:=Module[{idn=IntegerDigits[n],f,l},f=First[idn];l=Last[idn];Mod[n,f]==l]; Select[Range[10000],ldrQ]  (* Harvey P. Dale, Mar 21 2012 *)
  • PARI
    is_A210589(x)=x%(x\10^(#Str(x)-1))==x%10
    
  • Python
    def ok(n): s = str(n); return n > 0 and n%int(s[0]) == int(s[-1])
    print([k for k in range(242) if ok(k)]) # Michael S. Branicky, Oct 20 2021