A210596 Triangle read by rows of coefficients of polynomials v(n,x) jointly generated with A210221; see the Formula section.
1, 1, 2, 2, 2, 4, 3, 6, 4, 8, 5, 10, 16, 8, 16, 8, 20, 28, 40, 16, 32, 13, 36, 64, 72, 96, 32, 64, 21, 66, 124, 184, 176, 224, 64, 128, 34, 118, 248, 376, 496, 416, 512, 128, 256, 55, 210, 476, 808, 1056, 1280, 960, 1152, 256, 512, 89, 370, 908, 1640, 2416
Offset: 1
Examples
First five rows: 1 1 2 2 2 4 3 6 4 8 5 10 16 8 16 First three polynomials v(n,x): 1, 1 + 2x, 2 + 2x + 4x^2.
Links
- G. C. Greubel, Rows n=1..102 of triangle, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210221 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210596 *) With[{m = 10}, CoefficientList[CoefficientList[Series[1/((1-x-x^2) - t*2*x*(1-x)), {x, 0, m}, {t, 0, m}], x], t]]//Flatten (* G. C. Greubel, Dec 15 2018 *)
-
PARI
{T(n,k) = if(n==1 && k==0, 1, if(n==2 && k==0, 1, if(n==2 && k==1, 2, if(k<0 || k>n-1, 0, T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-1) ))))}; for(n=1,15, for(k=0, n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2018
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x) def a(n): return Poly(v(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print (a(n)) # Indranil Ghosh, May 27 2017
Formula
u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x),
where u(1,x) = 1, v(1,x) = 1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-1), T(1,0) = T(2,0) = 1, T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 25 2012
G.f.: 1/((1-x-x^2) - t*2*x*(1-x)). - G. C. Greubel, Dec 15 2018
Comments