cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210625 Least semiprime dividing digit reversal of n, or 0 if no such factor.

Original entry on oeis.org

0, 0, 0, 4, 0, 6, 0, 4, 9, 0, 0, 21, 0, 0, 51, 0, 0, 9, 91, 0, 4, 22, 4, 6, 4, 62, 4, 82, 4, 0, 0, 0, 33, 0, 0, 9, 0, 0, 93, 4, 14, 4, 34, 4, 6, 4, 74, 4, 94, 0, 15, 25, 35, 9, 55, 65, 15, 85, 95, 6, 4, 26, 4, 46, 4, 6, 4, 86, 4, 0, 0, 9, 0, 0, 57, 0, 77, 87
Offset: 1

Views

Author

Jonathan Vos Post, Mar 24 2012

Keywords

Comments

Roughly the analog of A209190 (least prime factor of reversal of digits), but with semiprimes (A001358) instead of primes (A000040).

Examples

			a(12) = min {k such that k|R(12) and k = p*q for primes p and q (not necessarily distinct)} = min {k, k|21 and k semiprime} = 21 = 3*7.
a(42) = min {k, k|24 and k semiprime} = min {4,6} = 4 = 2*2.
		

Crossrefs

Programs

  • Maple
    r:= proc(n) option remember; local q;
          `if`(n<10, n, irem(n, 10, 'q') *10^(length(n)-1)+r(q))
        end:
    a:= proc(n) local m, k;
          m:= r(n);
          for k from 4 to m do
             if irem(m, k)=0 and not isprime(k) and
                add(i[2], i=ifactors(k)[2])=2 then return k fi
          od; 0
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 26 2012
  • Mathematica
    spd[n_]:=Module[{sps=Select[Divisors[FromDigits[Reverse[ IntegerDigits[n]]]], PrimeOmega[#] == 2&,1]},If[sps=={},0,First[sps]]]; Array[spd,80] (* Harvey P. Dale, Aug 12 2012 *)

Formula

a(n) = A210615(R(n)) = A210615(A004086(n)).
a(p) = 0 iff p in (A004087 union A011557). - Alois P. Heinz, Mar 28 2012