A210625 Least semiprime dividing digit reversal of n, or 0 if no such factor.
0, 0, 0, 4, 0, 6, 0, 4, 9, 0, 0, 21, 0, 0, 51, 0, 0, 9, 91, 0, 4, 22, 4, 6, 4, 62, 4, 82, 4, 0, 0, 0, 33, 0, 0, 9, 0, 0, 93, 4, 14, 4, 34, 4, 6, 4, 74, 4, 94, 0, 15, 25, 35, 9, 55, 65, 15, 85, 95, 6, 4, 26, 4, 46, 4, 6, 4, 86, 4, 0, 0, 9, 0, 0, 57, 0, 77, 87
Offset: 1
Examples
a(12) = min {k such that k|R(12) and k = p*q for primes p and q (not necessarily distinct)} = min {k, k|21 and k semiprime} = 21 = 3*7. a(42) = min {k, k|24 and k semiprime} = min {4,6} = 4 = 2*2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
r:= proc(n) option remember; local q; `if`(n<10, n, irem(n, 10, 'q') *10^(length(n)-1)+r(q)) end: a:= proc(n) local m, k; m:= r(n); for k from 4 to m do if irem(m, k)=0 and not isprime(k) and add(i[2], i=ifactors(k)[2])=2 then return k fi od; 0 end: seq(a(n), n=1..100); # Alois P. Heinz, Mar 26 2012
-
Mathematica
spd[n_]:=Module[{sps=Select[Divisors[FromDigits[Reverse[ IntegerDigits[n]]]], PrimeOmega[#] == 2&,1]},If[sps=={},0,First[sps]]]; Array[spd,80] (* Harvey P. Dale, Aug 12 2012 *)
Comments