A210643 Areas A of the triangles such that A, the sides and the three altitudes are integers.
150, 300, 600, 1050, 1200, 1350, 2400, 2700, 3750, 4200, 4800, 5070, 5400, 7350, 7500, 9450, 9600, 10140, 10800, 12150, 14700, 15000, 16800, 17340, 18150, 19200, 20280, 21600, 24300, 25350, 26250, 29400, 30000, 33750, 34680, 36300, 37800
Offset: 1
Keywords
Examples
Primitive solutions follow: Area, ( a, b, c), (h1, h2, h3), Case 150, (15, 20, 25), (20, 15, 12), Right, 300, (25, 25, 30), (24, 24, 20), Isosceles, 300, (25, 25, 40), (24, 24, 15), Isosceles, 1050, (35, 75, 100), (60, 28, 21), Other, 5070, (65, 156, 169), (156, 65, 60), Right, 10140, (130, 169, 169), (156, 120, 120), Isosceles, 10140, (169, 169, 312), (120, 120, 65), Isosceles, 17340, (136, 255, 289), (255, 136, 120), Right, 34680, (272, 289, 289), (255, 240, 240), Isosceles, 34680, (289, 289, 510), (240, 240, 136), Isosceles, 52500, (175, 600, 625), (600, 175, 168), Right, 82500, (275, 625, 750), (600, 264, 220), Other.
Links
- Ray Chandler, Table of n, a(n) for n = 1..64
- Eric Weisstein, Isosceles Triangle
- Eric Weisstein, Altitude
Crossrefs
Cf. A188158.
Programs
-
Maple
with(numtheory):T:=array(1..1000):k:=0:nn:=500:for a from 1 to nn do: for b from a to nn do: for c from b to nn do:p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):if s>0 then s1:=sqrt(s): h1:=2*s1/a: h2:=2*s1/b:h3:=2*s1/c:if s1=floor(s1) and h1=floor(h1) and h2=floor(h2) and h3=floor(h3) then k:=k+1:T[k]:=s1:else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
-
Mathematica
nn = 900; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]]&&IntegerQ[(2*Sqrt[area2])/a] &&IntegerQ[(2*Sqrt[area2])/b] &&IntegerQ[(2*Sqrt[area2])/c], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Extensions
More terms from Ray Chandler, Apr 24 2013
Comments