cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210643 Areas A of the triangles such that A, the sides and the three altitudes are integers.

Original entry on oeis.org

150, 300, 600, 1050, 1200, 1350, 2400, 2700, 3750, 4200, 4800, 5070, 5400, 7350, 7500, 9450, 9600, 10140, 10800, 12150, 14700, 15000, 16800, 17340, 18150, 19200, 20280, 21600, 24300, 25350, 26250, 29400, 30000, 33750, 34680, 36300, 37800
Offset: 1

Views

Author

Michel Lagneau, Mar 26 2012

Keywords

Comments

Properties of this sequence :
There exists three class of numbers included into a(n) :
(i) A subset such that {150, 600, 1350, 2400, 3750, 5070,…} where the sides a h1 = b, h2 = a, h3 = a*b/c.
(ii) A subset such that a(n) = 300*n^2 = {300, 1200, 2700, 4800, …} where the triangles (a,b,c) are isosceles with a = b < c, and it is easy to check that a = b = 25*n, c=30*n, h1 = h2 = 24*n and h3 = sqrt(b^2 - c^2/4).
(iii) A subset such that {1050, 4200, 9450,…} without the precedent properties.

Examples

			Primitive solutions follow:
Area,  ( a,   b,   c),  (h1,  h2,  h3), Case
  150,  (15,  20,  25),  (20,  15,  12), Right,
  300,  (25,  25,  30),  (24,  24,  20), Isosceles,
  300,  (25,  25,  40),  (24,  24,  15), Isosceles,
1050,  (35,  75, 100),  (60,  28,  21), Other,
5070,  (65, 156, 169), (156,  65,  60), Right,
10140, (130, 169, 169), (156, 120, 120), Isosceles,
10140, (169, 169, 312), (120, 120,  65), Isosceles,
17340, (136, 255, 289), (255, 136, 120), Right,
34680, (272, 289, 289), (255, 240, 240), Isosceles,
34680, (289, 289, 510), (240, 240, 136), Isosceles,
52500, (175, 600, 625), (600, 175, 168), Right,
82500, (275, 625, 750), (600, 264, 220), Other.
		

Crossrefs

Cf. A188158.

Programs

  • Maple
    with(numtheory):T:=array(1..1000):k:=0:nn:=500:for a from 1 to nn do: for b from a to nn do: for c from b to nn do:p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):if s>0 then s1:=sqrt(s): h1:=2*s1/a: h2:=2*s1/b:h3:=2*s1/c:if s1=floor(s1) and h1=floor(h1) and h2=floor(h2) and h3=floor(h3) then k:=k+1:T[k]:=s1:else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
  • Mathematica
    nn = 900; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]]&&IntegerQ[(2*Sqrt[area2])/a] &&IntegerQ[(2*Sqrt[area2])/b] &&IntegerQ[(2*Sqrt[area2])/c], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

Extensions

More terms from Ray Chandler, Apr 24 2013