A210662 Triangle read by rows: T(n,k) (1 <= k <= n) = number of monomer-dimer tilings of an n X k board.
1, 2, 7, 3, 22, 131, 5, 71, 823, 10012, 8, 228, 5096, 120465, 2810694, 13, 733, 31687, 1453535, 65805403, 2989126727, 21, 2356, 196785, 17525619, 1539222016, 135658637925, 11945257052321, 34, 7573, 1222550, 211351945, 36012826776, 6158217253688, 1052091957273408, 179788343101980135
Offset: 1
Examples
Triangle begins: 1 2 7 3 22 131 5 71 823 10012 8 228 5096 120465 2810694 13 733 31687 1453535 65805403 2989126727 21 2356 196785 17525619 1539222016 135658637925 11945257052321 34 7573 1222550 211351945 36012826776 6158217253688 1052091957273408 179788343101980135... The 7 matchings of the P(2) X P(2)-graph are: . . .-. . . . . . . . . .-. | | | | . . . . . . . . .-. . . .-.
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
- Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
Links
- Alois P. Heinz, Rows n = 1..18, flattened
- Ahrens, J. H. Paving the chessboard. J. Combin. Theory Ser. A 31(1981), no. 3, 277--288. MR0635371 (84d:05009). See Table I. - _N. J. A. Sloane_, Mar 27 2012
- Anzalone, Nick, et al. A Reciprocity Theorem for Monomer-Dimer Coverings. DMCS. 2003. arXiv:math/0304359 [math.CO]
- F. Cazals, Monomer-Dimer Tilings, 1997.
- Steven R. Finch, Two Dimensional Monomer-Dimer Constant [Broken link]
- Steven R. Finch, Two Dimensional Monomer-Dimer Constant [From the Wayback machine]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 362
- Friedland, Shmuel, and Uri N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem. arXiv:math/0402009 [math.CO]
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (26) and Table V).
- C. Kenyon, D. Randall, and A. Sinclair, Approximating the number of monomer-dimer coverings of a lattice, Journal of Statistical Physics 83 (1996), 637-659.
- David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- R. C. Read, The dimer problem for narrow rectangular arrays: A unified method of solution, and some extensions, Aequationes Mathematicae, 24 (1982), 47-65.
- Ralf Stephan, Animation of all 71 matchings of the P(2) X P(4) graph
- D. Zeilberger, Source
- Index entries for sequences related to dominoes
- Index entries for sequences related to matchings
- Index entries for sequences related to polyominoes
Programs
-
Sage
from sage.combinat.tiling import TilingSolver, Polyomino def T(n, k): p = Polyomino([(0, 0)]) q = Polyomino([(0, 0), (0, 1)]) T = TilingSolver([p, q], box=[n, k], reusable=True) return T.number_of_solutions() # Ralf Stephan, May 22 2014
Formula
Extensions
Typo in term 27 corrected by Alois P. Heinz, Dec 03 2012
Reviewed by Ralf Stephan, May 22 2014
Comments