cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210703 Triangular array D(n,k) counting disconnected k-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 1, 0, 0, 3, 0, 1, 0, 0, 4, 8, 3, 1, 0, 0, 5, 0, 8, 0, 0, 0, 6, 29, 25, 3, 1, 0, 0, 9, 0, 88, 0, 1, 0, 0, 10, 138, 377, 66, 5, 1, 0, 0, 13, 0, 2026, 0, 25, 0, 0, 0, 17, 774, 13349, 8029, 297, 5, 1, 0, 0, 21, 0, 104593, 0, 8199, 0, 1, 0, 0, 25, 5678, 930571, 3484759, 377004, 1562, 7, 1
Offset: 2

Views

Author

Jason Kimberley, Jan 21 2013

Keywords

Examples

			2: 0;
3: 0;
4: 0, 0;
5: 0, 0;
6: 0, 0, 1;
7: 0, 0, 1;
8: 0, 0, 1, 1;
9: 0, 0, 2, 0;
10: 0, 0, 2, 2, 1;
11: 0, 0, 3, 0, 1;
12: 0, 0, 4, 8, 3, 1;
13: 0, 0, 5, 0, 8, 0;
14: 0, 0, 6, 29, 25, 3, 1;
15: 0, 0, 9, 0, 88, 0, 1;
16: 0, 0, 10, 138, 377, 66, 5, 1;
17: 0, 0, 13, 0, 2026, 0, 25, 0;
18: 0, 0, 17, 774, 13349, 8029, 297, 5, 1;
19: 0, 0, 21, 0, 104593, 0, 8199, 0, 1;
20: 0, 0, 25, 5678, 930571, 3484759, 377004, 1562, 7, 1;
21: 0, 0, 33, 0, 9124627, 0, 22014143, 0, 100, 0;
22: 0, 0, 39, 53324, 96699740, 2595985769, 1493574756, 21617036, 10901, 9, 1;
23: 0, 0, 49, 0, 1095467916, 0, 114880777582, 0, 3470736, 0, 1;
24: 0, 0, 60, 622716, 13175254799, 2815099031409, 9919463450854, 733460349818, 1473822243, 88238, 11, 1;
		

Crossrefs

The sum of the n-th row is A210713(n).
Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), this sequence (triangle); for a fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).

Formula

D(n,k) = A068933(n,k) - A185204(n,k) [the former is padded to be a tabl but the latter is a tabf].
D(n,k) = A185643(n,k) - A186733(n,k) [both are tabl but the result is tabf].