cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210737 Number of Dyck n-paths all of whose ascents have prime lengths.

Original entry on oeis.org

1, 0, 1, 1, 2, 6, 8, 29, 50, 141, 327, 771, 2047, 4746, 12644, 30941, 79886, 204885, 522242, 1365056, 3505825, 9185742, 23907116, 62636476, 164624803, 432540010, 1142827935, 3017208675, 7996379870, 21211540268, 56369770281, 150086840133, 400009010758
Offset: 0

Views

Author

Alois P. Heinz, May 10 2012

Keywords

Examples

			a(0) = 1: the empty path.
a(1) = 0.
a(2) = 1: UUDD.
a(3) = 1: UUUDDD.
a(4) = 2: UUDDUUDD, UUDUUDDD.
a(5) = 6: UUDDUUUDDD, UUDUUUDDDD, UUUDDDUUDD, UUUDDUUDDD, UUUDUUDDDD, UUUUUDDDDD.
a(6) = 8: UUDDUUDDUUDD, UUDDUUDUUDDD, UUDUUDDDUUDD, UUDUUDDUUDDD, UUDUUDUUDDDD, UUUDDDUUUDDD, UUUDDUUUDDDD, UUUDUUUDDDDD.
		

Crossrefs

Cf. A210735.

Programs

  • Maple
    with(numtheory):
    b:= proc(x, y, u) option remember;
          `if`(x<0 or  y b(n, n, true):
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, u_] := b[x, y, u] = If[x<0 || yJean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
  • PARI
    seq(n)={Vec(serreverse(x/(1 + sum(i=2, n, if(isprime(i), x^i))) + O(x*x^n)))} \\ Andrew Howroyd, Apr 28 2018

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.7925684676903082567..., c = 0.4016264581712556... . - Vaclav Kotesovec, Sep 02 2014