cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210771 Inverse permutation to A210770.

Original entry on oeis.org

1, 2, 4, 6, 3, 8, 5, 10, 12, 7, 14, 16, 18, 9, 20, 22, 11, 24, 26, 13, 28, 30, 15, 32, 17, 34, 36, 19, 38, 40, 21, 42, 44, 23, 46, 48, 25, 50, 52, 27, 54, 56, 29, 58, 60, 31, 62, 64, 66, 33, 68, 70, 35, 72, 74, 37, 76, 78, 39, 80, 82, 41, 84, 86, 43, 88, 90
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2012

Keywords

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a210771 n = fromJust (elemIndex n a210770_list) + 1

A064736 a(1)=1, a(2)=2; for n>0, a(2*n+2) = smallest number missing from {a(1), ... ,a(2*n)}, and a(2*n+1) = a(2*n)*a(2*n+2).

Original entry on oeis.org

1, 2, 6, 3, 12, 4, 20, 5, 35, 7, 56, 8, 72, 9, 90, 10, 110, 11, 143, 13, 182, 14, 210, 15, 240, 16, 272, 17, 306, 18, 342, 19, 399, 21, 462, 22, 506, 23, 552, 24, 600, 25, 650, 26, 702, 27, 756, 28, 812, 29, 870, 30, 930, 31, 992, 32, 1056, 33, 1122, 34, 1224, 36
Offset: 1

Views

Author

J. C. Lagarias (lagarias(AT)umich.edu), Oct 21 2001

Keywords

Comments

Let c be the smallest positive constant such that for all permutations {a_n} of the positive integers, lim inf_{n -> infinity} gcd(a_n, a_{n+1})/n <= c. This sequence shows c >= 1/2.
The definition implies that if a(n) is prime then n is even. - N. J. A. Sloane, May 23 2017
a(2n) ~ n+1 ~ n has asymptotic density 1 and a(2n-1) ~ n(n+1) ~ n^2 has asymptotic density zero. - M. F. Hasler, May 23 2017

Crossrefs

A064745 gives inverse permutation.
Interleaving of A286290 and A286291. See also A286292, A286293.

Programs

  • Haskell
    import Data.List (delete)
    a064736 n = a064736_list !! (n-1)
    a064736_list = 1 : 2 : f 1 2 [3..] where
       f u v (w:ws) = u' : w : f u' w (delete u' ws) where u' = v * w
    -- Reinhard Zumkeller, Mar 23 2012
  • Mathematica
    A064736 = {a[1]=1, a[2]=2}; a[n_] := a[n] = (an = If[OddQ[n], a[n-1]*a[n+1], First[ Complement[ Range[n], A064736]]]; AppendTo[A064736, an]; an); Table[a[n], {n, 1, 62}] (*Jean-François Alcover, Aug 07 2012 *)

Extensions

More terms from Vladeta Jovovic, Oct 21 2001
Definition clarified by N. J. A. Sloane, May 23 2017

A055562 a(n) = least number greater than a(n-1) not the sum of an earlier pair of consecutive terms, a(0) = 2.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 105
Offset: 0

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(2) = 4 because a(1) = 3 and 4 <> a(0)+a(1);
a(3) = 6 because a(2) = 4 and 5 = a(0)+a(1) but 6 <> a(0)+a(1) and 6 <> a(1)+a(2).
		

Crossrefs

Complement of A022441. See A001651 for a(0) = 1 and A055563 for a(0) = 3

Formula

a(n) = A022441(n) - a(n-1) for n > 0.
a(2n) = 3n + 1 + (floor(log_2 n) mod 2), n >= 1; a(2n+1) = 3n+3, n >= 0. - Jeffrey Shallit, Jun 08 2000
a(n) = A210770(2*n+2). - Reinhard Zumkeller, Mar 25 2012

A022441 a(n) = c(n) + c(n-1) where c (A055562) is the sequence of numbers not in a.

Original entry on oeis.org

1, 5, 7, 10, 14, 17, 20, 23, 25, 28, 31, 34, 37, 40, 43, 46, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A055562 (complement), A022424.

Programs

  • Magma
    [1] cat [3*n + 2 - (Floor((Log(n)/Log(2))) mod 2): n in [0..10]]; // G. C. Greubel, Mar 08 2018
  • Maple
    A022441 := n-> `if`(n=0, 1, 3*n + 2 - (ilog2(n) mod 2)):
    seq(A022441(n), n= 0..59);
  • Mathematica
    Fold[Append[#1, Plus @@ Complement[Range[Max@#1 + 3], #1][[{#2 + 1, #2 + 2}]]] &, {1, 5}, Range[58]] (* Ivan Neretin, Mar 30 2017 *)
    Table[If[n==0,1, 3*n+2 - Mod[Floor[Log[n]/Log[2]], 2]], {n,0,30}] (* G. C. Greubel, Mar 08 2018 *)
  • PARI
    for(n=0,30, print1(if(n==0,1, 3*n+2 - (floor(log(n)/log(2))%2)), ", ")) \\ G. C. Greubel, Mar 08 2018
    

Formula

a(n) + a(n-1) = 3n + 2 - (floor(log_2 n) mod 2) for n >= 1. - Jeffrey Shallit, Jun 08 2000
For n>0, a(n) = b(n) with b(0)=0, b(2n) = -b(n)+9n+3, b(2n+1) = -b(n)+9n+6-[n==0]. - Ralf Stephan, Oct 24 2003
a(n) = A210770(2*n+1). - Reinhard Zumkeller, Mar 25 2012

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 23 2000
Term a(16)=50 fixed by Ivan Neretin, Mar 30 2017
Updated by Clark Kimberling, Feb 19 2018
Showing 1-4 of 4 results.