A210812 Number of spanning trees in C_8 X P_n.
8, 150528, 1633023000, 16435095011328, 163038254770568232, 1612366324251306624000, 15934583650849932493684792, 157453155560517847607911907328, 1555776346581461837260983280509000, 15372327644619615416626608479388244992
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..50
- Index to divisibility sequences
Programs
-
Maple
seq(expand(8*ChebyshevU(n-1,2)^2*ChebyshevU(n-1,3)*( ChebyshevU(n-1,(4+sqrt(2))/2)*ChebyshevU(n-1,(4-sqrt(2))/2) )^2), n = 1..10); # Peter Bala, May 02 2014
Formula
a(n) = 8*U(n-1,2)^2*U(n-1,3)*( U(n-1,(4+sqrt(2))/2)*U(n-1,(4-sqrt(2))/2) )^2 = 8*A001353(n)^2 * A001109(n) * A161158(n-1)^2, where U(n,x) is a Chebyshev polynomial of the second kind. - Peter Bala, May 02 2014
Comments