A210958 Decimal expansion of 1 - (Pi/4).
2, 1, 4, 6, 0, 1, 8, 3, 6, 6, 0, 2, 5, 5, 1, 6, 9, 0, 3, 8, 4, 3, 3, 9, 1, 5, 4, 1, 8, 0, 1, 2, 4, 2, 7, 8, 9, 5, 0, 7, 0, 7, 6, 5, 0, 1, 5, 6, 2, 2, 3, 5, 4, 4, 7, 5, 6, 2, 6, 3, 8, 5, 1, 9, 2, 3, 0, 4, 5, 8, 9, 8, 4, 2, 8, 4, 4, 7, 7, 5, 0, 3, 4, 2, 9, 9, 1
Offset: 0
Examples
0.21460183660255169038433915418012427895070765015622...
Links
- M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[1 - Pi/4, 10, 87][[1]] (* Bruno Berselli, Aug 03 2012 *)
-
PARI
1-Pi/4 \\ Charles R Greathouse IV, Oct 01 2022
Formula
From Amiram Eldar, Jun 29 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(2*k+3).
Equals Integral_{x=0..Pi/4} tan(x)^2 dx.
Equals Integral_{x=0..1} arcsin(x) dx /(1+x)^2.
Equals Integral_{x=1..oo} dx/(x^2+x^4). (End)
Equals -Integral_{x=0..1, y=0..1} arcsin(x*y)/((1+x*y)^2*log(x*y)) dx dy. (Apply Theorem 1 or Theorem 2 from Glasser (2019) to one of Amiram Eldar's integrals.) - Petros Hadjicostas, Jun 29 2020
Continued fraction 1/(3 + 3^2/(2 + 5^2/(2 + 7^2/(2 + ... )))). - Peter Bala, Feb 28 2024
Extensions
More terms from David Scambler, Aug 02 2012
Comments