A210982 Zero together with A126264 and positive terms of A051624 interleaved.
0, 1, 8, 12, 26, 33, 54, 64, 92, 105, 140, 156, 198, 217, 266, 288, 344, 369, 432, 460, 530, 561, 638, 672, 756, 793, 884, 924, 1022, 1065, 1170, 1216, 1328, 1377, 1496, 1548, 1674, 1729, 1862, 1920, 2060, 2121, 2268, 2332, 2486, 2553, 2714, 2784, 2952, 3025, 3200, 3276, 3458, 3537, 3726
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(10*n^2+8*n-3+(4*n+3)*(-1)^n )/8: n in [0..60]]; // Vincenzo Librandi, Oct 31 2014
-
Mathematica
Table[(10*n^2 + 8*n - 3 + (4*n + 3)*(-1)^n)/8, {n, 0, 50}] (* G. C. Greubel, Aug 23 2017 *)
-
PARI
my(x='x+O('x^50)); Vec(x*(1+7*x+2*x^2)/((1+x)^2*(1-x)^3)) \\ G. C. Greubel, Aug 23 2017
Formula
G.f.: x*(1+7*x+2*x^2) / ( (1+x)^2*(1-x)^3 ). - R. J. Mathar, Aug 07 2012
a(n) = (10*n^2 +8*n -3 +(4*n+3)*(-1)^n)/8. - Luce ETIENNE, Oct 14 2014
E.g.f.: (1/8)*((10*x^3 + 18*x -3)*exp(x) - (4*x - 3)*exp(-x)). - G. C. Greubel, Aug 23 2017
Sum_{n>=1} 1/a(n) = 5/9 + (sqrt(1-2/sqrt(5))/6 + sqrt(1+2/sqrt(5))/8)*Pi + 7*log(phi)*sqrt(5)/24 - 5*log(5)/48, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 21 2022
Comments