cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211111 Number of partitions of n into distinct divisors > 1 of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 19, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 14, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2012

Keywords

Comments

a(A136446(n)) > 1.

Examples

			n=12: the divisors > 1 of 12 are {2,3,4,6,12}, there are exactly two subsets which sum up to 12, namely {12} and {2,4,6}, therefore a(12) = 2;
a(13) = #{13} = 1, because 13 is prime, having no other divisor > 1;
n=14: the divisors > 1 of 14 are {2,7,14}, {14} is the only subset summing up to 14, therefore a(14) = 1.
		

Crossrefs

Programs

  • Haskell
    a211111 n = p (tail $ a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m | m < k     = 0
                   | otherwise = p ks (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 18 2021
  • Mathematica
    a[n_] := Count[IntegerPartitions[n, All, Divisors[n] // Rest], P_ /; Reverse[P] == Union[P]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 18 2021 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 18 2021