A211158 Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and positive odd determinant.
20, 84, 528, 1040, 3060, 4788, 10304, 14400, 26100, 34100, 55440, 69264, 104468, 126420, 180480, 213248, 291924, 338580, 448400, 512400, 660660, 745844, 940608, 1051200, 1301300, 1441908, 1756944, 1932560, 2322900, 2538900, 3015680, 3277824, 3852948, 4167380
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
Crossrefs
Cf. A210000.
Programs
-
Magma
[n*(n+1)*(3*n+1+3*n^2-(-1)^n*(2*n+1)): n in [1..35]]; // Vincenzo Librandi, Dec 14 2016
-
Mathematica
a = -n; b = n; z1 = 25; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, 2*n^2}] v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, 2*n^2}] w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, 2*n^2}] u1 = Table[u[n], {n, 1, z1}] (* A211156 *) v1 = Table[v[n], {n, 1, z1}] (* A211157 *) w1 = Table[w[n], {n, 1, z1}] (* A211158 *) (u1 - 1)/4 (* integers *) v1/4 (* integers *) w1/4 (* integers *) Table[n*(n+1)*(3*n+1+3*n^2-(-1)^n*(2*n+1)),{n,35}] (* Vincenzo Librandi, Dec 14 2016 *) CoefficientList[ Series[-(( 4(5 + 16x + 91x^2 + 64x^3 + 91x^4 + 16x^5 + 5x^6))/((x -1)^5 (x +1)^4)), {x, 0, 35}], x] (* or *) LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {20, 84, 528, 1040, 3060, 4788, 10304, 14400, 26100}, 36] (* Robert G. Wilson v, Dec 14 2016 *)
-
Python
def A211158(n): return n*(n+1)*(3*n+1+3*n**2-(-1)**n*(2*n+1)) # Chai Wah Wu, Dec 13 2016
Formula
From Chai Wah Wu, Dec 13 2016: (Start)
For n >= 0:
a(n) = A211155(n)/2.
a(n) = n*(n + 1)*(3*n + 1 + 3*n^2 - (-1)^n*(2*n + 1)). Therefore:
a(n) = n^2*(n + 1)*(3*n + 1) if n is even,
a(n) = n*(n + 1)^2*(3*n + 2) if n is odd.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(-20*x^6 - 64*x^5 - 364*x^4 - 256*x^3 - 364*x^2 - 64*x - 20)/((x - 1)^5*(x + 1)^4). (End)
a(n) = a(-n-1). - Bruno Berselli, Dec 14 2016
Comments