cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211169 The least n-almost Sophie Germain prime.

Original entry on oeis.org

2, 4, 52, 40, 688, 4900, 63112, 178240, 38272, 5357056, 1997824, 247221760, 586504192, 707436544, 15582115840, 47145459712, 77620412416, 1871289057280, 17787921498112, 10891875057664, 146305150615552, 535618317844480, 15921951753109504, 39754688251297792
Offset: 1

Views

Author

Keywords

Examples

			a(1)=2 because 2 and 5 are primes (A000040),
a(2)=4 because 4 and 9 are semiprimes (A001358),
a(3)=52 because the pair, 52 and 105, are 3-almost primes (A014612) and they are the least such pair,
a(4)=40 because the pair, 40 and 81, are 4-almost primes (A014613) and they are the least such pair, etc.
		

Crossrefs

Cf. A005384 (Sophie Germain primes), A111153 (Sophie Germain semiprimes), A111173 (Sophie Germain 3-almost primes), A111176 (Sophie Germain 4-almost primes), A211162 (Sophie Germain 5-almost primes).

Programs

  • Maple
    with(numtheory);
    A211169:=proc(q)
    local a,b,c,d,g,f,i,j,n;
    for j from 1 to q do for n from 1 to q do
        a:=ifactors(n)[2]; b:=nops(a); c:=ifactors(2*n+1)[2]; d:=nops(c); g:=0; f:=0;
        for i from 1 to b do g:=g+a[i][2]; od; for i from 1 to d do f:=f+c[i][2]; od;
        if g=f and g=j then print(n); break;
    fi; od; od; end:
    A211169(1000000000000);
  • Mathematica
    t = Table[0, {20}]; k = 2; While[k < 2700000001, x = PrimeOmega[k]; If[ t[[x]] == 0 && PrimeOmega[ 2k + 1] == x, t[[x]] = k; Print[{x, k}]]; k++]; t

Extensions

a(15)-a(24) from Giovanni Resta, Jan 31 2013

A238257 Numbers n such that n and 2n+1 use only odd decimal digits.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 17, 19, 35, 37, 39, 55, 57, 59, 75, 77, 79, 95, 97, 99, 155, 157, 159, 175, 177, 179, 195, 197, 199, 355, 357, 359, 375, 377, 379, 395, 397, 399, 555, 557, 559, 575, 577, 579, 595, 597, 599, 755, 757, 759, 775, 777, 779, 795, 797, 799, 955, 957, 959, 975, 977, 979, 995, 997, 999, 1555, 1557, 1559, 1575, 1577, 1579
Offset: 1

Views

Author

Zak Seidov, Feb 21 2014

Keywords

Comments

Sophie-Germain-analog for numbers with odd digits.
Also numbers with the first digit an odd digit and the other digits in {5, 7, 9}. - David A. Corneth, May 15 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[1600],AllTrue[Join[IntegerDigits[#],IntegerDigits[ 2#+1]], OddQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 15 2018 *)
  • PARI
    is(n)=#setminus(setunion(Set(digits(n)),Set(digits(2*n+1))), [1,3,5,7,9])==0 \\ Charles R Greathouse IV, May 15 2018

Formula

a(5(3^k-1)/2) = 10^k-1. - Giovanni Resta, Feb 22 2014
Showing 1-2 of 2 results.