cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211177 Numerator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.

Original entry on oeis.org

-1, 0, -1, 0, -1, 1, 1, 1, 1, 5, 19, 17, 29, 13, 21, 13, 47, 181, 503, 593, 533, 121, 1259, 1457, 6889, 7549, 7109, 7769, 52403, 59333, 11497, 6095, 29089, 61643, 59333, 63953, 62413, 7277, 21061, 2777, 10877, 11647, 3809, 3963, 1438, 271, 3064, 51439, 7217, 7493
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2013

Keywords

Examples

			Fractions begin with -1, 0, -1/2, 0, -1/4, 1/4, 1/12, 1/3, 1/6, 5/12, 19/60, 17/30, ...
		

Crossrefs

Cf. A000010, A028415, A211178 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
  • PARI
    a(n)=numerator(sum(k=1,n,(-1)^k/eulerphi(k)))

Formula

a(n)/A211178(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020
More accurately, a(n)/A211178(n) ~ (A/3) * (log(n) + gamma - B - 8*log(2)/3) + O(log(n)^(5/3)/n), where A = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and B = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Bordellès and Cloitre, 2013; Tóth, 2017). - Amiram Eldar, Oct 14 2022

Extensions

More terms from Amiram Eldar, Nov 20 2020

A357821 Denominators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 4, 12, 6, 24, 8, 24, 72, 72, 18, 63, 504, 63, 504, 168, 504, 2520, 2520, 10080, 1120, 3360, 3360, 672, 224, 2016, 2016, 10080, 10080, 5040, 2520, 5040, 15120, 1890, 7560, 143640, 143640, 17955, 143640, 143640, 574560, 6320160, 6320160, 6320160, 6320160
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Comments

See A357820 for more details.

Crossrefs

Cf. A001615, A173290, A357820 (numerators).
Similar sequence: A211178.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).

A357844 Denominators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

Original entry on oeis.org

1, 2, 1, 3, 6, 12, 12, 6, 2, 4, 4, 12, 12, 6, 12, 60, 60, 60, 60, 20, 5, 20, 20, 40, 120, 120, 120, 120, 120, 15, 30, 5, 20, 5, 20, 180, 180, 90, 180, 360, 360, 45, 90, 45, 90, 180, 180, 180, 180, 180, 45, 90, 45, 360, 360, 45, 180, 45, 90, 180, 180, 45, 90, 630
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Comments

See A357843 for more details.

Crossrefs

Cf. A000005, A307704, A357843 (numerators).
Similar sequences: A104529, A211178, A357821.

Programs

  • Mathematica
    Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(denominator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_count
    def A357844(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).
Showing 1-3 of 3 results.