A211235 Array of generalized Eulerian numbers C(n,k) read by antidiagonals.
1, 1, 2, 1, 4, 3, 1, 7, 10, 4, 1, 12, 27, 20, 5, 1, 21, 69, 77, 35, 6, 1, 38, 176, 272, 182, 56, 7, 1, 71, 456, 936, 846, 378, 84, 8, 1, 136, 1205, 3210, 3750, 2232, 714, 120, 9, 1, 265, 3247, 11075, 16290, 12342, 5214, 1254, 165, 10
Offset: 1
Examples
Array begins: 1, 2, 3, 4, 5, 6, ... A000027 1, 4, 10, 20, 35, 56, ... A000292 1, 7, 27, 77, 182, 378, ... A005585 1, 12, 69, 272, 846, 2232, ... A101097 1, 21, 176, 936, 3750, 12342, ... A254681 A005126, ... Triangle begins: 1 1 2 1 4 3 1 7 10 4 1 12 27 20 5 1 21 69 77 35 6 1 38 176 272 182 56 7 ...
Links
- D. H. Lehmer, Generalized Eulerian numbers, J. Combin. Theory Ser.A 32 (1982), no. 2, 195-215. MR0654621 (83k:10026).
Programs
-
Maple
A211235 := (n, k) -> add(binomial(n-i, k-i)*i^(n-k), i = 1 .. k): for n from 1 to 10 do seq(A211235(n, k), k = 1 .. n) end do; # Peter Bala, Oct 27 2015
-
Mathematica
T[n_, k_] := Sum[Binomial[n-i, k-i] * i^(n-k), {i, 1, k}]; Table[T[n, k], {n,1,10}, {k,1,n}] //Flatten (* Amiram Eldar, Nov 30 2018 *)
Formula
From Peter Bala, Oct 27 2015: (Start)
O.g.f. of n-th row of square array: 1/(1 - x)^n * (x*d/dx)^n log(1/(1 - x)), for n >= 1.
E.g.f. of square array: log((1 - x)/(1 - x*exp(t/(1 - x)))).
Read as a triangle: T(n,k) = Sum_{i = 1..k} binomial(n-i,k-i)*i^(n-k) for 1 <= k <= n.
n-th row polynomial of triangle: Sum_{i = 0..n-1} x^i*(x + i)^(n-i). (End)
Extensions
Terms a(37)-a(55) added by Peter Bala, Oct 27 2015