cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211353 Refined triangle A211357: T(n,k) is the number of noncrossing partitions up to rotation of an n-set that are of type k (k-th integer partition, defined by A194602).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 4, 6, 3, 5, 1, 2, 1, 1, 1, 1, 3, 5, 10, 5, 15, 3, 5, 6, 3, 1, 3, 1, 1, 1, 1, 4, 7, 19, 10, 35, 7, 19, 21, 12, 4, 21, 7, 7, 1, 3, 4, 4, 1, 1, 1, 1, 1, 4, 10, 28, 14, 70, 14, 48, 56, 28, 10
Offset: 1

Views

Author

Tilman Piesk, Apr 09 2012

Keywords

Comments

The rows are counted from 1, the columns from 0.
Row lengths: 1,2,3,5,7,11... (partition numbers A000041)
Row sums: 1,2,3,6,10,28... (A054357)
Row maxima: 1,1,1,2,2,6,15,35,84,252,630,1542...
Distinct entries per row: 1,1,1,2,2,6,6,9,11,17,17,30...
Rightmost columns are those from the triangle of circular binomial coefficients A047996 without the second column (i.e.triangle A037306).

Crossrefs

A211359 Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation and reflection of an n-set that contain k singleton blocks.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 4, 8, 3, 3, 0, 1, 6, 11, 12, 12, 4, 3, 0, 1, 14, 21, 39, 24, 22, 5, 4, 0, 1, 22, 55, 84, 85, 48, 30, 7, 4, 0, 1, 51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1, 95, 327, 620, 730, 570, 350, 136, 60
Offset: 0

Views

Author

Tilman Piesk, Apr 12 2012

Keywords

Examples

			From _Andrew Howroyd_, May 02 2018: (Start)
Triangle begins:
   1;
   0,   1;
   1,   0,   1;
   1,   1,   0,   1;
   2,   1,   2,   0,   1;
   2,   3,   2,   2,   0,  1;
   5,   4,   8,   3,   3,  0,  1;
   6,  11,  12,  12,   4,  3,  0, 1;
  14,  21,  39,  24,  22,  5,  4, 0, 1;
  22,  55,  84,  85,  48, 30,  7, 4, 0, 1;
  51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1;
  ...
(End)
		

Crossrefs

Column k=0 is A303931.
Row sums are A111275.

Programs

  • PARI
    \\ See A303875 for NCPartitionsModDihedral
    { my(rows=Vec(NCPartitionsModDihedral(vector(10, k, if(k==1,y,1)))));
    for(n=1, #rows, for(k=0, n-1, print1(polcoeff(rows[n], k), ", ")); print; ) } \\ Andrew Howroyd, May 02 2018

A295198 Number of noncrossing partitions up to rotation of an n-set without singleton blocks.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 6, 15, 28, 67, 145, 368, 870, 2211, 5549, 14290, 36824, 96347, 252927, 670142, 1783770, 4777951, 12855392, 34756783, 94345664, 257114389, 703150507, 1929404736, 5310364234, 14658134277, 40569137070, 112566363319, 313074271844, 872677323283
Offset: 0

Views

Author

Andrew Howroyd, Nov 16 2017

Keywords

Crossrefs

Column k=0 of A211357.
Cf. A005043 (noncrossing partitions of an n-set without singleton blocks).
Cf. A002426.

Programs

  • Mathematica
    b[0] = 1; b[1] = 0; b[n_] := b[n] = (n-1)*(2*b[n-1] + 3*b[n-2])/(n+1);
    a[0] = 1; a[n_] := (b[n] + Sum[EulerPhi[n/d]*Coefficient[(1 + x + x^2)^d, x, d], {d, Most @ Divisors[n]}])/n;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A005043.
    b(n) = {polcoeff(serreverse((x - x^3) / (1 + x^3) + x * O(x*x^n)), n+1)}
    a(n) = {if(n<1, n==0, (b(n) + sumdiv(n,d, if(d
    				

Formula

a(n) = (1/n) * (A005043(n) - A002426(n) + Sum_{d|n} phi(n/d) * A002426(d)).
Showing 1-3 of 3 results.