cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A211355 Refined triangle A211359: T(n,k) is the number of noncrossing partitions up to rotation and reflection of an n-set that are of type k (k-th integer partition, defined by A194602).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 5, 3, 3, 1, 2, 1, 1, 1, 1, 3, 4, 8, 4, 9, 3, 4, 4, 2, 1, 3, 1, 1, 1, 1, 4, 5, 14, 8, 19, 5, 14, 13, 8, 4, 12, 4, 4, 1, 3, 4, 3, 1, 1, 1, 1, 1, 4, 7, 20, 10, 38, 10, 30, 32, 16, 7, 48
Offset: 1

Views

Author

Tilman Piesk, Apr 09 2012

Keywords

Comments

The rows are counted from 1, the columns from 0.
Row lengths: 1,2,3,5,7,11... (partition numbers A000041)
Row sums: 1,2,3,6,10,24... (A111275)
Row maxima: 1,1,1,2,2,5,9,19,48,132,330,781
Distinct entries per row: 1,1,1,2,2,4,6,9,15,21,28,43
Rightmost columns are those from the triangle A052307 without the second column.

Crossrefs

A303929 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation and reflection composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 6, 1, 1, 1, 1, 3, 8, 13, 12, 1, 1, 1, 1, 4, 11, 34, 49, 27, 1, 1, 1, 1, 4, 16, 60, 169, 201, 65, 1, 1, 1, 1, 5, 20, 109, 423, 1019, 940, 175, 1, 1, 1, 1, 5, 26, 167, 918, 3381, 6710, 4643, 490, 1
Offset: 0

Views

Author

Andrew Howroyd, May 02 2018

Keywords

Examples

			=================================================================
n\k| 1   2    3     4      5       6       7       8        9
---+-------------------------------------------------------------
0  | 1   1    1     1      1       1       1       1        1 ...
1  | 1   1    1     1      1       1       1       1        1 ...
2  | 1   1    1     1      1       1       1       1        1 ...
3  | 1   2    2     3      3       4       4       5        5 ...
4  | 1   3    5     8     11      16      20      26       32 ...
5  | 1   6   13    34     60     109     167     257      359 ...
6  | 1  12   49   169    423     918    1741    3051     4969 ...
7  | 1  27  201  1019   3381    9088   20569   41769    77427 ...
8  | 1  65  940  6710  29335   96315  259431  607696  1280045 ...
9  | 1 175 4643 47104 266703 1072187 3417520 9240444 22066742 ...
...
		

Crossrefs

Columns 2..5 are A006082(n+1), A082938, A303870, A303871.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #]&] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#]&])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    Table[T[n - k, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 14 2018, translated from PARI *)
  • PARI
    \\ here c(n,k) is A303694
    u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
    e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
    c(n, k)={if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(k*d, d)) + sumdiv(gcd(n-1, k), d, eulerphi(d)*binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n, n)/(n*(k-1)+1))}
    T(n,k)={(1/2)*(c(n,k) + if(n==0, 1, if(k%2, if(n%2, 2*u(n\2,k,(k+1)/2), u(n/2,k,1) + u(n/2-1,k,k)), e(n,k) + if(n%2, u(n\2,k,k/2)))/2))}

A211357 Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation of an n-set that contain k singleton blocks.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 6, 9, 4, 3, 0, 1, 6, 15, 18, 15, 5, 3, 0, 1, 15, 36, 56, 42, 29, 7, 4, 0, 1, 28, 91, 144, 142, 84, 42, 10, 4, 0, 1, 67, 232, 419, 432, 322, 152, 66, 12, 5, 0, 1, 145, 603, 1160, 1365, 1080, 630, 252, 90, 15, 5, 0, 1
Offset: 0

Views

Author

Tilman Piesk, Apr 12 2012

Keywords

Examples

			From _Andrew Howroyd_, Nov 16 2017: (Start)
Triangle begins: (n >= 0, 0 <= k <= n)
   1;
   0,   1;
   1,   0,   1;
   1,   1,   0,   1;
   2,   1,   2,   0,   1;
   2,   3,   2,   2,   0,   1;
   5,   6,   9,   4,   3,   0,  1;
   6,  15,  18,  15,   5,   3,  0,  1;
  15,  36,  56,  42,  29,   7,  4,  0, 1;
  28,  91, 144, 142,  84,  42, 10,  4, 0, 1;
  67, 232, 419, 432, 322, 152, 66, 12, 5, 0, 1;
(End)
		

Crossrefs

Column k=0 is A295198.
Row sums are A054357.
Cf. A091867 (noncrossing partitions of an n-set with k singleton blocks), A211359 (up to rotations and reflections).
Cf. A171128.

Programs

  • Mathematica
    a91867[n_, k_] := If[k == n, 1, (Binomial[n + 1, k]/(n + 1)) Sum[Binomial[n + 1 - k, j] Binomial[n - k - j - 1, j - 1], {j, 1, (n - k)/2}]];
    a2426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}];
    a171128[n_, k_] := Binomial[n, k]*a2426[n - k];
    T[0, 0] = 1;
    T[n_, k_] := (1/n)*(a91867[n, k] - a171128[n, k] + Sum[EulerPhi[d]* a171128[n/d, k/d], {d, Divisors[GCD[n, k]]}]);
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    g(x,y) = {1/sqrt((1 - (1 + y)*x)^2 - 4*x^2) - 1}
    S(n)={my(A=(1-sqrt(1-4*x/(1-(y-1)*x) + O(x^(n+2))))/(2*x)-1); Vec(1+intformal((A + sum(k=2, n, eulerphi(k)*g(x^k + O(x*x^n), y^k)))/x))}
    my(v=S(10)); for(n=1, #v, my(p=v[n]); for(k=0, n-1, print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 16 2017

Formula

T(n,k) = (1/n)*(A091867(n,k) - A171128(n,k) + Sum_{d|gcd(n,k)} phi(d) * A171128(n/d, k/d)) for n > 0. - Andrew Howroyd, Nov 16 2017

A303931 Number of noncrossing partitions up to rotation and reflection of an n-set without singleton blocks.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 6, 14, 22, 51, 95, 232, 498, 1239, 2953, 7520, 18920, 49235, 127917, 338094, 896060, 2397627, 6439730, 17403252, 47207620, 128628877, 351676075, 964909660, 2655474962, 7329668097, 20285420790, 56284927718, 156539620498, 436343744531
Offset: 0

Views

Author

Andrew Howroyd, May 02 2018

Keywords

Crossrefs

Column k=0 of A211359.

Programs

  • PARI
    \\ See A303875 for NCPartitionsModDihedral
    Vec(NCPartitionsModDihedral(vector(40, k, k>1))) \\ Andrew Howroyd, May 02 2018
Showing 1-4 of 4 results.