cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211359 Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation and reflection of an n-set that contain k singleton blocks.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 4, 8, 3, 3, 0, 1, 6, 11, 12, 12, 4, 3, 0, 1, 14, 21, 39, 24, 22, 5, 4, 0, 1, 22, 55, 84, 85, 48, 30, 7, 4, 0, 1, 51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1, 95, 327, 620, 730, 570, 350, 136, 60
Offset: 0

Views

Author

Tilman Piesk, Apr 12 2012

Keywords

Examples

			From _Andrew Howroyd_, May 02 2018: (Start)
Triangle begins:
   1;
   0,   1;
   1,   0,   1;
   1,   1,   0,   1;
   2,   1,   2,   0,   1;
   2,   3,   2,   2,   0,  1;
   5,   4,   8,   3,   3,  0,  1;
   6,  11,  12,  12,   4,  3,  0, 1;
  14,  21,  39,  24,  22,  5,  4, 0, 1;
  22,  55,  84,  85,  48, 30,  7, 4, 0, 1;
  51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1;
  ...
(End)
		

Crossrefs

Column k=0 is A303931.
Row sums are A111275.

Programs

  • PARI
    \\ See A303875 for NCPartitionsModDihedral
    { my(rows=Vec(NCPartitionsModDihedral(vector(10, k, if(k==1,y,1)))));
    for(n=1, #rows, for(k=0, n-1, print1(polcoeff(rows[n], k), ", ")); print; ) } \\ Andrew Howroyd, May 02 2018

A303875 Number of noncrossing partitions of an n-set up to rotation and reflection with all blocks having a prime number of elements.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 5, 7, 14, 26, 49, 107, 215, 502, 1112, 2619, 6220, 14807, 36396, 88397, 219920, 545196, 1364669, 3434436, 8658463, 21989434, 55893852, 142823174, 365766327, 939575265, 2420885031, 6250344302, 16183450744, 41981605437, 109155492638
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Comments

The number of such noncrossing partitions counted distinctly is given by A210737.

Crossrefs

Programs

  • PARI
    \\ number of partitions with restricted block sizes
    NCPartitionsModDihedral(v)={ my(n=#v);
    my(p=serreverse( x/(1 + sum(k=1, #v, x^k*v[k])) + O(x^2*x^n) )/x);
    my(vars=variables(p));
    my(varpow(r,d)=substvec(r + O(x^(n\d+1)), vars, apply(t->t^d, vars)));
    my(q=x*deriv(p)/p, h=varpow(p,2));
    my(R=sum(i=0, (#v-1)\2, v[2*i+1]*x*(x^2*h)^i), Q=sum(i=1, #v\2, v[2*i]*(x^2*h)^i), T=sum(k=1, #v, my(t=v[k]); if(t, x^k*t*sumdiv(k, d, eulerphi(d) * varpow(p,d)^(k/d))/k)));
    (T + 2 + intformal(sum(d=1, n, eulerphi(d)*varpow(q,d))/x) - p + (1 + Q + (1+R)^2*h/(1-Q))/2)/2 + O(x*x^n)
    }
    Vec(NCPartitionsModDihedral(vector(40,k,isprime(k))))
Showing 1-2 of 2 results.