A211359 Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation and reflection of an n-set that contain k singleton blocks.
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 4, 8, 3, 3, 0, 1, 6, 11, 12, 12, 4, 3, 0, 1, 14, 21, 39, 24, 22, 5, 4, 0, 1, 22, 55, 84, 85, 48, 30, 7, 4, 0, 1, 51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1, 95, 327, 620, 730, 570, 350, 136, 60
Offset: 0
Examples
From _Andrew Howroyd_, May 02 2018: (Start) Triangle begins: 1; 0, 1; 1, 0, 1; 1, 1, 0, 1; 2, 1, 2, 0, 1; 2, 3, 2, 2, 0, 1; 5, 4, 8, 3, 3, 0, 1; 6, 11, 12, 12, 4, 3, 0, 1; 14, 21, 39, 24, 22, 5, 4, 0, 1; 22, 55, 84, 85, 48, 30, 7, 4, 0, 1; 51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1; ... (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274 (terms 0..90 from Tilman Piesk)
Programs
-
PARI
\\ See A303875 for NCPartitionsModDihedral { my(rows=Vec(NCPartitionsModDihedral(vector(10, k, if(k==1,y,1))))); for(n=1, #rows, for(k=0, n-1, print1(polcoeff(rows[n], k), ", ")); print; ) } \\ Andrew Howroyd, May 02 2018