A211392 The number of divisors d of n! such that the symmetric group on n letters contains no elements of order d.
0, 0, 1, 4, 10, 24, 51, 85, 146, 254, 520, 769, 1557, 2561, 3997, 5333, 10705, 14633, 29315, 40970, 60722, 95912, 191902, 242769, 339909, 532088, 677224, 917112, 1834373, 2332596, 4665375, 5529352, 7864049, 12164824, 16422587, 19595164, 39190653, 60465758
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n,i) option remember; local p; p:= `if`(i<1, 1, ithprime(i)); `if`(n=0 or i<1, 1, b(n, i-1)+ add(b(n-p^j, i-1), j=1..ilog[p](n))) end: a:= n-> numtheory[tau](n!) -b(n, numtheory[pi](n)): seq(a(n), n=1..100); # Alois P. Heinz, Feb 15 2013
-
Mathematica
b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, b[n, i-1] + Sum[b[n-p^j, i-1], {j, 1, Floor@Log[p, n]}]]]; a[n_] := DivisorSigma[0, n!] - b[n, PrimePi[n]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Feb 11 2013