cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211392 The number of divisors d of n! such that the symmetric group on n letters contains no elements of order d.

Original entry on oeis.org

0, 0, 1, 4, 10, 24, 51, 85, 146, 254, 520, 769, 1557, 2561, 3997, 5333, 10705, 14633, 29315, 40970, 60722, 95912, 191902, 242769, 339909, 532088, 677224, 917112, 1834373, 2332596, 4665375, 5529352, 7864049, 12164824, 16422587, 19595164, 39190653, 60465758
Offset: 1

Views

Author

Alexander Gruber, Feb 07 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, b(n, i-1)+
          add(b(n-p^j, i-1), j=1..ilog[p](n)))
        end:
    a:= n-> numtheory[tau](n!) -b(n, numtheory[pi](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, b[n, i-1] + Sum[b[n-p^j, i-1], {j, 1, Floor@Log[p, n]}]]];
    a[n_] := DivisorSigma[0, n!] - b[n, PrimePi[n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)

Formula

a(n) = A000005(n!) - A009490(n).

Extensions

More terms from Alois P. Heinz, Feb 11 2013