A211455 The number of bases b for which A181780(n) is a Fermat pseudoprime.
2, 2, 2, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 2, 14, 4, 2, 2, 2, 2, 2, 14, 2, 34, 2, 2, 2, 14, 2, 2, 2, 6, 2, 8, 2, 2, 2, 2, 2, 34, 2, 2, 2, 14, 2, 2, 14, 2, 2, 2, 2, 14, 10, 2, 2, 10, 4, 2, 2, 14, 4, 2, 2, 8, 6, 2, 2, 2, 14, 2, 2, 2, 2, 2, 34, 2, 14, 6, 38, 6, 2, 2
Offset: 1
Keywords
Links
Programs
-
Mathematica
t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n], s = Select[Range[2, n-2], PowerMod[#, n-1, n] == 1 &]; If[s != {}, AppendTo[t, {n, Length[s], s}]]]]; Transpose[t][[2]] f[n_] := If[ PrimeQ@ n, {}, Count[ Table[ PowerMod[k, n - 1, n], {k, 2, n - 2}], 1]] /. {0 -> {}}; Array[f, 237] // Flatten (* Robert G. Wilson v, Apr 08 2015 *)
Formula
a(n) = A063994(m) - 2 for odd m in A181780. a(n) = A063994(m) - 1 for even m in A181780. - Thomas Ordowski, Dec 13 2013
Comments