cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211523 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w+2x=5y.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 7, 10, 13, 17, 20, 24, 29, 34, 40, 45, 51, 58, 65, 73, 80, 88, 97, 106, 116, 125, 135, 146, 157, 169, 180, 192, 205, 218, 232, 245, 259, 274, 289, 305, 320, 336, 353, 370, 388, 405, 423, 442, 461, 481, 500, 520, 541, 562, 584, 605, 627
Offset: 0

Views

Author

Clark Kimberling, Apr 14 2012

Keywords

Comments

For a guide to related sequences, see A211422.
Also, number of ordered pairs (w,x) with both terms in {1,...,n} and w+2x divisible by 5. - Pontus von Brömssen, Jan 17 2020

Crossrefs

Cf. A211422.

Programs

  • Magma
    a:=[]; for n in [0..57] do m:=0; for i,j in [1..n] do if (i+2*j) mod 5 eq 0  then m:=m+1; end if; end for; Append(~a,m); end for; a; // Marius A. Burtea, Jan 17 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 57);[0,0] cat Coefficients(R!( x^2*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4) ))); // Marius A. Burtea, Jan 17 2020
  • Mathematica
    t[n_] := t[n] = Flatten[Table[w + 2 x - 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}]   (* A211523 *)
    FindLinearRecurrence[t]
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,1,2,4,5,7},57] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    concat(vector(2), Vec(x^2*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Dec 02 2017
    

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
G.f.: x^2*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Dec 02 2017