cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211534 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w = 3x + 3y.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 6, 6, 6, 10, 10, 10, 15, 15, 15, 21, 21, 21, 28, 28, 28, 36, 36, 36, 45, 45, 45, 55, 55, 55, 66, 66, 66, 78, 78, 78, 91, 91, 91, 105, 105, 105, 120, 120, 120, 136, 136, 136, 153, 153, 153, 171, 171, 171, 190, 190, 190, 210
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2012

Keywords

Comments

This sequence consists of six 0's followed by triply repeated triangular numbers.
For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422, A008805 (w = 2x + 2y and doubly repeated triangular numbers).

Programs

  • Magma
    [Floor(n/3)*(Floor(n/3)-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 05 2015
    
  • Magma
    [n le 7 select Floor(n/7) else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+ Self(n-7): n in [1..70]]; // Vincenzo Librandi, Apr 05 2015
  • Maple
    A211534:=n->floor(n/3)*(floor(n/3)-1)/2: seq(A211534(n), n=0..100); # Wesley Ivan Hurt, Apr 05 2015
  • Mathematica
    t[n_] := t[n] = Flatten[Table[-w + 3 x + 3 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}]  (* A211534 *)
    FindLinearRecurrence[t]
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    concat([0,0,0,0,0,0], Vec(-x^6/((x-1)^3*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, Feb 17 2015
    

Formula

a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7).
a(n) = floor(n/3)*( floor(n/3) - 1 )/2. - Luce ETIENNE, Jul 08 2014
G.f.: -x^6 / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Feb 17 2015
a(n) = Sum_{i=0..n-3} i*0^(i mod 3)/3. - Wesley Ivan Hurt, Apr 05 2015