A211603 Triangular array read by rows: T(n,k) is the number of n-permutations that are pure cycles having exactly k fixed points; n>=2, 0<=k<=n-2.
1, 2, 3, 6, 8, 6, 24, 30, 20, 10, 120, 144, 90, 40, 15, 720, 840, 504, 210, 70, 21, 5040, 5760, 3360, 1344, 420, 112, 28, 40320, 45360, 25920, 10080, 3024, 756, 168, 36, 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45, 3628800, 3991680, 2217600, 831600, 237600, 55440, 11088, 1980, 330, 55
Offset: 2
Examples
T(3,1) = 3 because we have (1)(2,3), (2)(1,3), (3)(1,2). 1; 2, 3; 6, 8, 6; 24, 30, 20, 10; 120, 144, 90, 40, 15; 720, 840, 504, 210, 70, 21; 5040, 5760, 3360, 1344, 420, 112, 28; 40320, 45360, 25920, 10080, 3024, 756, 168, 36; 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45;
Links
- Alois P. Heinz, Rows n = 2..150, flattened
Programs
-
Maple
T:= (n, k)-> binomial(n, k)*(n-k-1)!: seq(seq(T(n,k), k=0..n-2), n=2..12); # Alois P. Heinz, Feb 10 2013
-
Mathematica
nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x](Log[1/(1-x)]-x),{x,0,nn}],{x,y}]]//Grid
Formula
E.g.f.: exp(y*x)*(log(1/(1-x))-x).
T(n,k) = C(n,k)*(n-k-1)!. - Alois P. Heinz, Feb 10 2013
T(n,k) = A111492(n,n-k). - R. J. Mathar, Mar 07 2013
Comments