A211678 Twin primes p, p+2 with unique values of sigma(p) and sigma(p+2); sigma(n) = A000203(n) = sum of divisors of n.
3, 5, 7, 197, 199, 281, 283, 347, 349, 461, 463, 641, 643, 821, 823, 857, 859, 1289, 1291, 1697, 1699, 1721, 1723, 1787, 1789, 1877, 1879, 2081, 2083, 2141, 2143, 2381, 2383, 2549, 2551, 2801, 2803, 3257, 3259, 3539, 3541, 3557, 3559, 3929, 3931, 4019, 4021
Offset: 1
Keywords
Examples
Twin primes 197 and 199 are in sequence because sigma(197) = 198, sigma(199) = 200 and there are no other numbers m, n with sigma(m) = 198 or sigma(n) = 200.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems: Inversion of Multiplicative Functions (invphi.gp).
Crossrefs
Programs
-
Mathematica
d = DivisorSigma[1, Range[4100]]; t = Transpose[Select[Tally[Sort[d]], #[[2]] == 1 && #[[1]] <= Length[d] &]][[1]]; t2 = Sort[Flatten[Table[Position[d, i], {i, t}]]]; t3 = Select[t2, PrimeQ]; tp = {}; Do[If[t3[[i + 1]] - t3[[i]] == 2 && DivisorSigma[1, t3[[i]]] != DivisorSigma[1, t3[[i + 1]]], AppendTo[tp, t3[[i]]]; AppendTo[tp, t3[[i]] + 2]], {i, Length[t3] - 1}]; Union[tp] (* T. D. Noe, Apr 26 2012 *)
-
PARI
is(k) = isprime(k) && invsigmaNum(sigma(k)) == 1 && ((isprime(k+2) && invsigmaNum(sigma(k+2)) == 1) || (isprime(k-2) && invsigmaNum(sigma(k-2)) == 1)); \\ Amiram Eldar, Aug 08 2024, using Max Alekseyev's invphi.gp