cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211678 Twin primes p, p+2 with unique values of sigma(p) and sigma(p+2); sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

3, 5, 7, 197, 199, 281, 283, 347, 349, 461, 463, 641, 643, 821, 823, 857, 859, 1289, 1291, 1697, 1699, 1721, 1723, 1787, 1789, 1877, 1879, 2081, 2083, 2141, 2143, 2381, 2383, 2549, 2551, 2801, 2803, 3257, 3259, 3539, 3541, 3557, 3559, 3929, 3931, 4019, 4021
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Examples

			Twin primes 197 and 199 are in sequence because sigma(197) = 198, sigma(199) = 200 and there are no other numbers m, n with sigma(m) = 198 or sigma(n) = 200.
		

Crossrefs

Subsequence of A211656 and A211660.
Cf. A211767 (lesser of twin primes p, p+2 with unique values of sigma(p) and sigma(p+2)), A211769 (greater of twin primes p, p+2 with unique values of sigma(p) and sigma(p+2)).
Cf. A000203.

Programs

  • Mathematica
    d = DivisorSigma[1, Range[4100]]; t = Transpose[Select[Tally[Sort[d]], #[[2]] == 1 && #[[1]] <= Length[d] &]][[1]]; t2 = Sort[Flatten[Table[Position[d, i], {i, t}]]]; t3 = Select[t2, PrimeQ]; tp = {}; Do[If[t3[[i + 1]] - t3[[i]] == 2 && DivisorSigma[1, t3[[i]]] != DivisorSigma[1, t3[[i + 1]]], AppendTo[tp, t3[[i]]]; AppendTo[tp, t3[[i]] + 2]], {i, Length[t3] - 1}]; Union[tp] (* T. D. Noe, Apr 26 2012 *)
  • PARI
    is(k) = isprime(k) && invsigmaNum(sigma(k)) == 1 && ((isprime(k+2) && invsigmaNum(sigma(k+2)) == 1) || (isprime(k-2) && invsigmaNum(sigma(k-2)) == 1)); \\ Amiram Eldar, Aug 08 2024, using Max Alekseyev's invphi.gp