cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211776 a(n) = Product_{d | n} tau(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 16, 2, 24, 6, 16, 2, 288, 2, 16, 16, 120, 2, 288, 2, 288, 16, 16, 2, 9216, 6, 16, 24, 288, 2, 4096, 2, 720, 16, 16, 16, 46656, 2, 16, 16, 9216, 2, 4096, 2, 288, 288, 16, 2, 460800, 6, 288, 16, 288, 2, 9216, 16, 9216, 16, 16, 2, 5308416, 2
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Examples

			For n = 6: divisors of 6: 1, 2, 3, 6; tau(d): 1, 2, 2, 4; product _{d | n} tau(d) = 1*2*2*4 = 16, where tau = A000005.
		

Crossrefs

Cf. A000005, A001221, A007425 (Sum_{d | n} tau(d)).

Programs

  • Maple
    A211776 := proc(n)
        mul( A000005(d),d=numtheory[divisors](n)) ;
    end proc:
    seq(A211776(n),n=1..20) ; # R. J. Mathar, Feb 13 2019
  • Mathematica
    Table[Product[DivisorSigma[0, i], {i, Divisors[n]}], {n, 100}] (* T. D. Noe, Apr 26 2012 *)
    a[1] = 1; a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, d = Times @@ (e + 1); Times @@ ((e + 1)!^(d/(e + 1)))]; Array[a, 100] (* using the Formula section,  Amiram Eldar, Aug 04 2020 *)
  • PARI
    A211776(n) = { my(m=1); fordiv(n, d, m *= numdiv(d)); m };
    A211776(n) = prod(d=1, n, if((n % d), 1, numdiv(d)));
    \\ Antti Karttunen, May 19 2017

Formula

a(n) = Product_{i=1..omega(n)} (b_i+1)!^(tau(n)/(b_i+1)), where omega(n) is the number of distinct prime factors of n, tau(n) is the number of divisors of n, and n = p_1^(b_1)*p_2^(b_2)* ... *p_{omega(n)}^(b_{omega(n)}). - Anand Rao Tadipatri, Aug 04 2020