cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211780 a(n) = Sum_{d|n, dA000005 is the number of divisors.

Original entry on oeis.org

0, 2, 2, 7, 2, 14, 2, 18, 9, 18, 2, 43, 2, 22, 20, 41, 2, 54, 2, 57, 24, 30, 2, 106, 13, 34, 31, 71, 2, 110, 2, 88, 32, 42, 28, 162, 2, 46, 36, 142, 2, 138, 2, 99, 81, 54, 2, 237, 17, 102, 44, 113, 2, 178, 36, 178, 48, 66, 2, 325, 2, 70, 99, 183, 40, 194, 2
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Comments

Numbers n such that n divides a(n) are given in A068978.

Examples

			For n = 12: Sum_{d|n, d<n} d * tau(n / d) = 1*6 + 2*4 + 3*3 + 4*2 + 6*2 = 43.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[d*DivisorSigma[0, n/d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 27 2012 *)
  • PARI
    A211780(n) = sumdiv(n, d, sigma(d))-n; \\ Antti Karttunen, Nov 13 2017
    
  • Python
    A211780=lambda n:sum(sigma(d) for d in divisors(n, generator=True))-n
    from sympy import divisor_sigma as sigma, divisors # M. F. Hasler, Jun 03 2024

Formula

a(n) = A007429(n) - n = A211779(n) + A000203(n) - n .
a(n) = (Sum_{d|n} A000203(d)) - n. - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^4/36 - 1 = 1.705808... . - Amiram Eldar, Jun 06 2024

Extensions

Name edited by M. F. Hasler, Jun 03 2024