A211780
a(n) = Sum_{d|n, dA000005 is the number of divisors.
0, 2, 2, 7, 2, 14, 2, 18, 9, 18, 2, 43, 2, 22, 20, 41, 2, 54, 2, 57, 24, 30, 2, 106, 13, 34, 31, 71, 2, 110, 2, 88, 32, 42, 28, 162, 2, 46, 36, 142, 2, 138, 2, 99, 81, 54, 2, 237, 17, 102, 44, 113, 2, 178, 36, 178, 48, 66, 2, 325, 2, 70, 99, 183, 40, 194, 2
Offset: 1
Keywords
Examples
For n = 12: Sum_{d|n, d<n} d * tau(n / d) = 1*6 + 2*4 + 3*3 + 4*2 + 6*2 = 43.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..27144 (first 1000 terms from Jaroslav Krizek)
Programs
-
Mathematica
Table[Sum[d*DivisorSigma[0, n/d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 27 2012 *)
-
PARI
A211780(n) = sumdiv(n, d, sigma(d))-n; \\ Antti Karttunen, Nov 13 2017
-
Python
A211780=lambda n:sum(sigma(d) for d in divisors(n, generator=True))-n from sympy import divisor_sigma as sigma, divisors # M. F. Hasler, Jun 03 2024
Formula
a(n) = (Sum_{d|n} A000203(d)) - n. - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^4/36 - 1 = 1.705808... . - Amiram Eldar, Jun 06 2024
Extensions
Name edited by M. F. Hasler, Jun 03 2024
Comments