cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A211784 a(n) = n^2 + floor(n^2/2) + floor(n^2/3).

Original entry on oeis.org

1, 7, 16, 29, 45, 66, 89, 117, 148, 183, 221, 264, 309, 359, 412, 469, 529, 594, 661, 733, 808, 887, 969, 1056, 1145, 1239, 1336, 1437, 1541, 1650, 1761, 1877, 1996, 2119, 2245, 2376, 2509, 2647, 2788, 2933, 3081, 3234, 3389, 3549, 3712, 3879
Offset: 1

Views

Author

Clark Kimberling, Apr 20 2012

Keywords

Comments

Row 3 of the array A211783.

Crossrefs

Programs

  • Magma
    [&+[Floor(n^2/k): k in [1..3]]: n in [1..46]]; // Bruno Berselli, May 06 2012
  • Mathematica
    f[n_, m_] := Sum[Floor[n^2/k], {k, 1, m}]
    t = Table[f[n, 3], {n, 1, 90}]
    FindLinearRecurrence[t]
    LinearRecurrence[{1, 1, 0, -1, -1, 1},{1, 7, 16, 29, 45, 66},46] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6) for n>=7.
G.f.: x*(1+6*x+8*x^2+6*x^3+x^4)/((1-x)^3*(1+2*x+2*x^2+x^3)). - Bruno Berselli, May 06 2012
a(n) = (66*n^2 + 9*(-1)^n - 17 - 4*A061347(n))/36. - Stefano Spezia, Nov 23 2023
Showing 1-1 of 1 results.