A211858 Number of partitions of n into parts <= 3 with the property that all parts have distinct multiplicities.
1, 1, 2, 2, 3, 4, 5, 7, 7, 8, 10, 14, 12, 19, 19, 19, 23, 30, 26, 37, 35, 37, 43, 52, 45, 60, 59, 61, 68, 80, 70, 90, 88, 91, 100, 113, 101, 126, 124, 127, 136, 153, 139, 168, 165, 168, 180, 199, 182, 216, 212, 216, 229, 251, 232, 269, 265, 270, 285, 309, 286
Offset: 0
Examples
For n=3 the a(3)=2 partitions are {3} and {1,1,1}. Note that {2,1} does not count, as 1 and 2 appear with the same nonzero multiplicity.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Doron Zeilberger, Using generatingfunctionology to enumerate distinct-multiplicity partitions.
Programs
-
Haskell
a211858 n = p 0 [] [1..3] n where p m ms _ 0 = if m `elem` ms then 0 else 1 p [] _ = 0 p m ms ks'@(k:ks) x | x < k = 0 | m == 0 = p 1 ms ks' (x - k) + p 0 ms ks x | m `elem` ms = p (m + 1) ms ks' (x - k) | otherwise = p (m + 1) ms ks' (x - k) + p 0 (m : ms) ks x -- Reinhard Zumkeller, Dec 27 2012
Formula
G.f.: -(2*x^17 +3*x^16 +5*x^15 +5*x^14 +4*x^13 +2*x^11 +2*x^9 +3*x^8 +5*x^7 +5*x^6 +6*x^5 +6*x^4 +5*x^3 +4*x^2 +2*x+1) / ((x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+1) *(x+1)^2 *(x^2+x+1)^2 *(x-1)^3). - Alois P. Heinz, Apr 26 2012