cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211859 Number of partitions of n into parts <= 4 with the property that all parts have distinct multiplicities.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 8, 10, 10, 14, 18, 18, 26, 31, 30, 39, 48, 48, 61, 63, 73, 84, 101, 98, 124, 132, 147, 156, 188, 182, 223, 227, 257, 272, 322, 306, 367, 377, 417, 427, 499, 488, 564, 567, 645, 647, 740, 720, 828, 836, 920, 924, 1048, 1030, 1173, 1161
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Examples

			For n=3 the a(3) = 2 partitions are [3] and [1,1,1]. Note that [2,1] does not count, as 1 and 2 appear with the same nonzero multiplicity.
		

Crossrefs

Programs

  • Haskell
    a211859 n = p 0 [] [1..4] n where
       p m ms _      0 = if m `elem` ms then 0 else 1
       p    []     _ = 0
       p m ms ks'@(k:ks) x
         | x < k       = 0
         | m == 0      = p 1 ms ks' (x - k) + p 0 ms ks x
         | m `elem` ms = p (m + 1) ms ks' (x - k)
         | otherwise   = p (m + 1) ms ks' (x - k) + p 0 (m : ms) ks x
    -- Reinhard Zumkeller, Dec 27 2012

Formula

G.f.: (9*x^45 +20*x^44 +44*x^43 +76*x^42 +121*x^41 +172*x^40 +234*x^39 +292*x^38 +346*x^37 +380*x^36 +412*x^35 +415*x^34 +417*x^33 +401*x^32 +389*x^31 +365*x^30 +361*x^29 +351*x^28 +359*x^27 +365*x^26 +383*x^25 +391*x^24 +413*x^23 +422*x^22 +436*x^21 +444*x^20 +454*x^19 +454*x^18 +458*x^17 +450*x^16 +437*x^15 +415*x^14 +383*x^13 +342*x^12 +298*x^11 +248*x^10 +198*x^9 +152*x^8 +110*x^7 +76*x^6 +49*x^5 +30*x^4 +16*x^3 +8*x^2 +3*x +1) / ((x^2-x+1) *(x^4-x^3+x^2-x+1) *(x^6+x^3+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+x+1)^2 *(x^4+x^3+x^2+x+1)^2 *(x^2+1)^2 *(x+1)^3 *(x-1)^4). - Alois P. Heinz, Feb 09 2017