A211868 Number of ways to write n as the root-mean-square (RMS) of a set of distinct odd integers.
1, 0, 1, 0, 3, 0, 3, 0, 9, 1, 19, 2, 59, 13, 161, 50, 413, 123, 1201, 352, 3463, 689, 10921, 1585, 35365, 5409, 110773, 20950, 359725, 82702, 1192801, 320873, 3998397, 1096384, 13584075, 3417934, 45973713, 10657777, 157515581, 33447019, 543663919, 111463220
Offset: 1
Keywords
Examples
a(5) = 3: 5 = RMS(5) = RMS(1,7) = RMS(1,5,7); a(7) = 3: 7 = RMS(7) = RMS(1,5,11) = RMS(1,5,7,11); a(9) = 9: 9 = RMS(9) = RMS(5,7,13) = RMS(5,7,9,13) = RMS(3,5,11,13) = RMS(3,5,9,11,13) = RMS(1,3,7,11,15) = RMS(1,3,7,9,11,15) = RMS(1,3,5,17) = RMS(1,3,5,9,17); a(10) = 1: 10 = RMS(1,3,5,7,9,11,15,17); a(11) = 19: 11 = RMS(11) = RMS(3,9,13,15) = RMS(3,9,11,13,15) = RMS(5,7,17) = RMS(5,7,11,17) = RMS(1,5,13,17) = RMS(1,5,11,13,17) = RMS(1,3,9,15,17) = RMS(1,3,9,11,15,17) = RMS(3,5,7,9,13,15,17) = RMS(3,5,7,9,11,13,15,17) = RMS(1,5,7,13,19) = RMS(1,5,7,11,13,19) = RMS(1,3,7,9,15,19) = RMS(1,3,7,9,11,15,19) = RMS(3,5,7,9,21) = RMS(3,5,7,9,11,21) = RMS(1,3,5,9,13,21) = RMS(1,3,5,9,11,13,21); a(12) = 2: 12 = RMS(1,5,7,9,11,15,17,19) = RMS(1,3,5,7,9,13,17,23).
Links
- Eric Weisstein's World of Math, Root-Mean-Square
Programs
-
Haskell
a211868 n = f a005408_list 1 nn 0 where f (o:os) l nl xx | yy > nl = 0 | yy < nl = f os (l + 1) (nl + nn) yy + f os l nl xx | otherwise = if w == n then 1 else 0 where w = if r == 0 then a000196 m else 0 (m, r) = divMod yy l yy = xx + o * o nn = n ^ 2
Extensions
a(37)-a(40) from Alois P. Heinz, Feb 25 2013
a(41)-a(42) from Alois P. Heinz, May 03 2015