A211880 Number of permutations of n elements with no fixed points and largest cycle of length 3.
0, 0, 0, 2, 0, 20, 40, 210, 1120, 4760, 25200, 157850, 800800, 5345340, 35035000, 222472250, 1648046400, 12000388400, 88529240800, 720929459250, 5786188408000, 48072795270500, 424300329453000, 3731123025279650, 34083741984292000, 323768324084205000
Offset: 0
Keywords
Examples
a(3) = 2: (2,3,1), (3,1,2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
egf:= (exp(x^3/3)-1)*exp(x^2/2): a:= n-> n! *coeff(series(egf, x, n+1), x, n): seq(a(n), n=0..30);
-
Mathematica
A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n - i, {i, 1, j - 1}] A[n - j, k], {j, 2, k}]]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; a[n_] := T[n, 3]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 03 2021, after Alois P. Heinz in A211871 *)
Formula
E.g.f.: (exp(x^3/3)-1) * exp(x^2/2).
Recurrence: (n-3)*a(n) = (n-1)*(2*n-5)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-5). - Vaclav Kotesovec, Oct 09 2013
Comments