cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211878 Decimal expansion of positive constant C such that 1 = Sum_{k>=1} 1/C^(2^k).

Original entry on oeis.org

1, 3, 2, 9, 0, 5, 9, 1, 0, 8, 7, 4, 9, 5, 5, 9, 5, 6, 4, 6, 0, 9, 9, 1, 6, 8, 2, 6, 7, 9, 2, 4, 3, 6, 2, 5, 1, 9, 4, 9, 7, 7, 6, 5, 9, 3, 8, 8, 4, 1, 8, 2, 8, 7, 8, 7, 3, 4, 2, 2, 9, 8, 5, 0, 2, 7, 3, 0, 4, 0, 8, 5, 4, 4, 9, 2, 0, 4, 4, 7, 6, 3, 4, 8, 0, 3, 8, 3, 8, 2, 7, 7, 9, 7, 8, 1, 9, 1, 2, 2, 9, 6, 8, 0, 1, 9, 3, 2, 3, 8, 6, 6
Offset: 1

Views

Author

Jimmy Zotos and Balarka Sen, Feb 13 2013

Keywords

Examples

			C = 1.3290591087495595646...
		

Programs

  • Maple
    Digits:= 120:
    s:= convert(fsolve(sum(1/C^(2^k), k=1..infinity)=1, C=1)/10, string):
    seq(parse(s[n+1]), n=1..112);
  • Mathematica
    digits = 112; f[x_?NumericQ] := NSum[1/x^(2^k), {k, 1, Infinity}, WorkingPrecision -> digits]; x /. FindRoot[f[x] == 1, {x, 3/2, 1, 2}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 20 2014 *)

Extensions

More terms from Alois P. Heinz, Feb 13 2013