A211991 Difference between the arithmetic derivative of n and the sum of proper divisors of n.
0, 0, 0, 1, 0, -1, 0, 5, 2, -1, 0, 0, 0, -1, -1, 17, 0, 0, 0, 2, -1, -1, 0, 8, 4, -1, 14, 4, 0, -11, 0, 49, -1, -1, -1, 5, 0, -1, -1, 18, 0, -13, 0, 8, 6, -1, 0, 36, 6, 2, -1, 10, 0, 15, -1, 28, -1, -1, 0, -16, 0, -1, 10, 129, -1, -17, 0, 14, -1, -15, 0, 33
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Table[dn[n] - (DivisorSigma[1, n] - n), {n, 100}] (* T. D. Noe, Dec 27 2012 *)
-
PARI
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A211991(n) = (A003415(n) - (sigma(n)-n)); \\ Antti Karttunen, Mar 08 2018
Formula
Sum_{k=1..n} a(k) ~ c * n^2, where c = (A136141 - A013661 + 1) / 2 = 0.0641113... . - Amiram Eldar, Mar 17 2024
Comments