cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A348970 a(n) = A003959(n) - A129283(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 7, 1, 1, 0, 8, 0, 1, 1, 33, 0, 9, 0, 10, 1, 1, 0, 40, 1, 1, 10, 12, 0, 11, 0, 131, 1, 1, 1, 48, 0, 1, 1, 54, 0, 13, 0, 16, 12, 1, 0, 164, 1, 13, 1, 18, 0, 57, 1, 68, 1, 1, 0, 64, 0, 1, 14, 473, 1, 17, 0, 22, 1, 15, 0, 204, 0, 1, 14, 24, 1, 19, 0, 230, 67, 1, 0, 80, 1, 1, 1, 96, 0, 75, 1, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

There are no negative terms. We prove this by induction over the prime factorization of n, showing that A348507(n) >= A003415(n) for all values of n >= 1. At n=1, both sequences have value 0, and at the primes both sequences obtain the value 1, so the base cases hold. We know that A348507(n)-(n/p) = (p+1)*A348507(n/p) for all prime factors p of n (see comment in A348507). With the arithmetic derivative we obtain respectively that A003415(n) = A003415(p*(n/p)) = A003415(p)*(n/p) + p*A003415(n/p) = (n/p) + p*A003415(n/p), for any prime factor p of n. Now A348507(p*(n/p)) >= A003415(p*(n/p)) iff A348507(p*(n/p)) - (n/p) >= A003415(p*(n/p)) - (n/p), that is, iff (p+1)*A348507(n/p) >= p*A003415(n/p), which indeed follows by the induction hypothesis, which assumes that A348507(x) >= A003415(x) for all proper divisors x of n.

Crossrefs

Cf. A008578 (positions of zeros), A001358 (positions of ones).

Programs

  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n - d[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348970(n) = (A003959(n) - (n+A003415(n)));

Formula

a(n) = A003959(n) - A129283(n) = A003959(n) - (n+A003415(n)).
a(n) = A348029(n) - A211991(n).
a(n) = A348507(n) - A003415(n).
For all n >= 1, a(A001358(n)) = 1.

A343226 a(n) = gcd(sigma(n), n+A003415(n)), where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 4, 1, 6, 1, 8, 5, 1, 1, 12, 28, 14, 1, 1, 1, 18, 39, 20, 2, 1, 1, 24, 4, 1, 1, 2, 4, 30, 1, 32, 7, 1, 1, 1, 1, 38, 1, 1, 18, 42, 1, 44, 4, 6, 1, 48, 4, 3, 1, 1, 2, 54, 15, 1, 4, 1, 1, 60, 8, 62, 1, 2, 1, 1, 1, 68, 14, 1, 3, 72, 3, 74, 1, 2, 4, 1, 1, 80, 2, 1, 1, 84, 16, 1, 1, 1, 12, 90, 3, 1, 4, 1, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2021

Keywords

Comments

a(n) = n+1 iff n is prime (A000040). - Bernard Schott, Jun 01 2021

Crossrefs

Programs

Formula

a(n) = gcd(A000203(n), A129283(n)) = gcd(A000203(n), A211991(n)).
a(n) = A000203(n) / A343227(n).
a(n) = 1 if n is squarefree semiprime (A006881). - Bernard Schott, Jun 02 2021

A212127 Numbers n whose arithmetic derivative equals the sum of its proper divisors.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 220, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1

Views

Author

Omar E. Pol, Dec 18 2012

Keywords

Comments

Numbers n such that A003415(n) = A001065(n). Also numbers n such that A211991(n) = 0. By definition, all prime numbers are in the sequence. Nonprime numbers in the sequence are 1, 12, 18, 220,...

Examples

			The arithmetic derivative of 12 is equal to 16 (see A003415). On the other hand the sum of proper divisors of 12 is equal to 16 since 1+2+3+4+6 = 16, so 12 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212127:=proc(i)
    local n, p;
    for n from 1 to i do
      if sigma(n)/n-1=add(op(2,p)/op(1,p),p=ifactors(n)[2]) then print(n);
    fi; od; end:
    A212127(1000);  # Paolo P. Lava, Jan 04 2012
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Select[Range[300], dn[#] == DivisorSigma[1, #] - # &] (* T. D. Noe, Dec 27 2012 *)

A344586 Numbers k for which A003415(k) >= A001065(k), where A003415 gives the arithmetic derivative, and A001065 is the sum of proper divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 120, 121, 124, 125, 127, 128, 131
Offset: 1

Views

Author

Antti Karttunen, May 24 2021

Keywords

Crossrefs

Cf. A212127, A212128 (subsequences), A344585 (complement).
Positions of nonnegative terms in A211991.
Differs from A212165 for the first time at n=121, where a(121) = 220, while A212165(121) = 223.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA344586(n) = (A003415(n) >= (sigma(n)-n));

A212128 Nonprimes whose arithmetic derivative equals the sum of its proper divisors.

Original entry on oeis.org

1, 12, 18, 220, 396, 287532
Offset: 1

Views

Author

Omar E. Pol, Dec 19 2012

Keywords

Comments

a(7) > 10^12. - Giovanni Resta, Mar 11 2014

Examples

			The arithmetic derivative of 12 is equal to 16 (see A003415). On the other hand the sum of proper divisors of 12 is equal to 16 since 1+2+3+4+6 = 16, so 12 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Select[Range[300000], ! PrimeQ[#] && dn[#] == DivisorSigma[1, #] - # &] (* T. D. Noe, Dec 27 2012 *)

A344178 Difference between the arithmetic derivative of n and the cototient of n: a(n) = A003415(n) - A051953(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 8, 3, 1, 0, 8, 0, 1, 1, 24, 0, 9, 0, 12, 1, 1, 0, 28, 5, 1, 18, 16, 0, 9, 0, 64, 1, 1, 1, 36, 0, 1, 1, 44, 0, 11, 0, 24, 18, 1, 0, 80, 7, 15, 1, 28, 0, 45, 1, 60, 1, 1, 0, 48, 0, 1, 24, 160, 1, 15, 0, 36, 1, 13, 0, 108, 0, 1, 20, 40, 1, 17, 0, 128, 81, 1, 0, 64, 1, 1, 1, 92, 0, 57, 1, 48, 1, 1, 1, 208
Offset: 1

Views

Author

Antti Karttunen, May 23 2021

Keywords

Comments

Question: Are all terms nonnegative? See also A211991 and A344584.
From Bernard Schott, May 25 2021: (Start)
Answer: Yes, can be proved when n = Product_{i=1..k} p_i^e_i with n' = n * Sum_{i=1..k} (e_i/p_i) and cototient(n) = n * (1 - Product_{i=1..k} (1 - 1/p_i)).
a(n) = 0 iff n is in A008578 (1 together with the primes).
a(n) = 1 iff n is in A006881 (squarefree semiprimes) (End).

Crossrefs

Cf. A000010, A003415, A051953, A168036, A344584 (inverse Möbius transform).
Cf. also A211991.

Programs

  • Mathematica
    Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] - # + EulerPhi[#] &, 96] (* Michael De Vlieger, May 24 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A344178(n) = A003415(n) - (n-eulerphi(n));

Formula

a(n) = A003415(n) - A051953(n) = A168036(n) + A000010(n).

A344584 Difference between the inverse Möbius transform of the arithmetic derivative of n and the sum of the proper divisors of n: a(n) = A319684(n) - A001065(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 10, 3, 1, 0, 11, 0, 1, 1, 34, 0, 13, 0, 15, 1, 1, 0, 47, 5, 1, 21, 19, 0, 12, 0, 98, 1, 1, 1, 59, 0, 1, 1, 67, 0, 14, 0, 27, 22, 1, 0, 151, 7, 21, 1, 31, 0, 76, 1, 87, 1, 1, 0, 82, 0, 1, 28, 258, 1, 18, 0, 39, 1, 16, 0, 203, 0, 1, 26, 43, 1, 20, 0, 219, 102, 1, 0, 104, 1, 1, 1, 127, 0, 99, 1, 51, 1, 1, 1, 423
Offset: 1

Views

Author

Antti Karttunen, May 24 2021

Keywords

Crossrefs

Inverse Möbius transform of A344178.

Programs

  • Mathematica
    Block[{a}, a[1] = 0; a[n_] := a[n] = If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Array[DivisorSum[#, a[#] &] - DivisorSigma[1, #] + # &, 96]] (* Michael De Vlieger, May 24 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A319684(n) = sumdiv(n, d, A003415(d));
    A344584(n) = (A319684(n) - (sigma(n)-n));

Formula

a(n) = A319684(n) - A001065(n) = A211991(n) + A319683(n).
a(n) = Sum_{d|n} A344178(d).
a(n) = n + Sum_{d|n} A168036(d).

A344585 Numbers whose sum of proper divisors (A001065) is greater than their arithmetic derivative (A003415).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143, 145, 146, 150, 154, 155, 156, 158, 159, 161, 165, 166, 170
Offset: 1

Views

Author

Antti Karttunen, May 24 2021

Keywords

Comments

Differs from A212168 for the first time at n=100, where a(100) = 221, while A212168(100) = 220. See also comments in A211991.

Crossrefs

Cf. A001065, A003415, A212168, A344586 (complement).
Positions of negative terms in A211991.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA344585(n) = (A003415(n) < (sigma(n)-n));

A345059 a(n) = A129283(n) / gcd(sigma(n), A129283(n)), where A129283(n) is the sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 8, 1, 11, 1, 4, 15, 17, 1, 1, 1, 23, 23, 48, 1, 1, 1, 22, 31, 35, 1, 17, 35, 41, 27, 15, 1, 61, 1, 16, 47, 53, 47, 96, 1, 59, 55, 6, 1, 83, 1, 23, 14, 71, 1, 40, 21, 95, 71, 54, 1, 9, 71, 37, 79, 89, 1, 19, 1, 95, 57, 256, 83, 127, 1, 10, 95, 43, 1, 76, 1, 113, 65, 39, 95, 149, 1, 128, 189, 125, 1, 13, 107
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A129283(n) / A343226(n) = A129283(n) / gcd(A000203, A129283(n)).
Showing 1-9 of 9 results.