A212010
Triangle read by rows: T(n,k) = total number of parts in the last k shells of n.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 6, 9, 11, 12, 8, 14, 17, 19, 20, 15, 23, 29, 32, 34, 35, 19, 34, 42, 48, 51, 53, 54, 32, 51, 66, 74, 80, 83, 85, 86, 42, 74, 93, 108, 116, 122, 125, 127, 128, 64, 106, 138, 157, 172, 180, 186, 189, 191, 192, 83, 147, 189, 221, 240
Offset: 1
For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
. S{5} S{4-5} S{3-5} S{2-5} S{1-5}
--------------------------------------------------------
. The Last Last Last The
. last two three four five
. shell shells shells shells shells
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 1 4+1 4+1 4+1 4+1
. 1 2+2+1 2+2+1 2+2+1 2+2+1
. 1 1+1 3+1+1 3+1+1 3+1+1
. 1 1+1 1+1+1 2+1+1+1 2+1+1+1
. 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
. 8 14 17 19 20
.
So row 5 lists 8, 14, 17, 19, 20.
.
Triangle begins:
1;
2, 3;
3, 5, 6;
6, 9, 11, 12;
8, 14, 17, 19, 20;
15, 23, 29, 32, 34, 35;
19, 34, 42, 48, 51, 53, 54;
32, 51, 66, 74, 80, 83, 85, 86;
42, 74, 93, 108, 116, 122, 125, 127, 128;
64, 106, 138, 157, 172, 180, 186, 189, 191, 192;
A212001
Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.
Original entry on oeis.org
1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
Offset: 1
For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
. S{1-5} S{2-5} S{3-5} S{4-5} S{5}
--------------------------------------------------------
. The Last Last Last The
. five four three two last
. shells shells shells shells shell
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 4+1 4+1 4+1 4+1 1
. 2+2+1 2+2+1 2+2+1 2+2+1 1
. 3+1+1 3+1+1 3+1+1 1+1 1
. 2+1+1+1 2+1+1+1 1+1+1 1+1 1
. 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1
. ---------- ---------- ---------- ---------- ----------
. 35 34 31 26 15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4, 3;
9, 8, 5;
20, 19, 16, 11;
35, 34, 31, 26, 15;
66, 65, 62, 57, 46, 31;
105, 104, 101, 96, 85, 70, 39;
176, 175, 172, 167, 156, 141, 110, 71;
270, 269, 266, 261, 250, 235, 204, 165, 94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
A212011
Triangle read by rows: T(n,k) = sum of all parts of the last k shells of n.
Original entry on oeis.org
1, 3, 4, 5, 8, 9, 11, 16, 19, 20, 15, 26, 31, 34, 35, 31, 46, 57, 62, 65, 66, 39, 70, 85, 96, 101, 104, 105, 71, 110, 141, 156, 167, 172, 175, 176, 94, 165, 204, 235, 250, 261, 266, 269, 270, 150, 244, 315, 354, 385, 400, 411, 416, 419, 420, 196, 346
Offset: 1
For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of in each set:
--------------------------------------------------------
. S{5} S{4-5} S{3-5} S{2-5} S{1-5}
--------------------------------------------------------
. The Last Last Last The
. last two three four five
. shell shells shells shells shells
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 1 4+1 4+1 4+1 4+1
. 1 2+2+1 2+2+1 2+2+1 2+2+1
. 1 1+1 3+1+1 3+1+1 3+1+1
. 1 1+1 1+1+1 2+1+1+1 2+1+1+1
. 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
. 15 26 31 34 35
.
So row 5 lists 15, 26, 31, 34, 35.
.
Triangle begins:
1;
3, 4;
5, 8, 9;
11, 16, 19, 20;
15, 26, 31, 34, 35;
31, 46, 57, 62, 65, 66;
39, 70, 85, 96, 101, 104, 105;
71, 110, 141, 156, 167, 172, 175, 176;
94, 165, 204, 235, 250, 261, 266, 269, 270;
150, 244, 315, 354, 385, 400, 411, 416, 419, 420;
A211980
Triangle read by rows: T(n,k) = total number of regions in the last n-k+1 shells of n.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 5, 4, 3, 2, 7, 6, 5, 4, 2, 11, 10, 9, 8, 6, 4, 15, 14, 13, 12, 10, 8, 4, 22, 21, 20, 19, 17, 15, 11, 7, 30, 29, 28, 27, 25, 23, 19, 15, 8, 42, 41, 40, 39, 37, 35, 31, 27, 20, 12, 56, 55, 54, 53, 51, 49, 45, 41, 34, 26, 14, 77, 76, 75
Offset: 1
Triangle begins:
1;
2, 1;
3, 2, 1;
5, 4, 3, 2;
7, 6, 5, 4, 2;
11, 10, 9, 8, 6, 4;
15, 14, 13, 12, 10, 8, 4;
22, 21, 20, 19, 17, 15, 11, 7;
30, 29, 28, 27, 25, 23, 19, 15, 8;
42, 41, 40, 39, 37, 35, 31, 27, 20, 12;
56, 55, 54, 53, 51, 49, 45, 41, 34, 26, 14;
77, 76, 75, 74, 72, 70, 66, 62, 55, 47, 35, 21;
Showing 1-4 of 4 results.
Comments