cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A212010 Triangle read by rows: T(n,k) = total number of parts in the last k shells of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 6, 9, 11, 12, 8, 14, 17, 19, 20, 15, 23, 29, 32, 34, 35, 19, 34, 42, 48, 51, 53, 54, 32, 51, 66, 74, 80, 83, 85, 86, 42, 74, 93, 108, 116, 122, 125, 127, 128, 64, 106, 138, 157, 172, 180, 186, 189, 191, 192, 83, 147, 189, 221, 240
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031.
It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
.  S{5}       S{4-5}     S{3-5}     S{2-5}     S{1-5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  last       two        three      four       five
.  shell      shells     shells     shells     shells
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.    1        4+1        4+1        4+1        4+1
.      1      2+2+1      2+2+1      2+2+1      2+2+1
.      1        1+1      3+1+1      3+1+1      3+1+1
.        1        1+1      1+1+1    2+1+1+1    2+1+1+1
.          1        1+1      1+1+1    1+1+1+1  1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
.  8         14         17         19         20
.
So row 5 lists 8, 14, 17, 19, 20.
.
Triangle begins:
1;
2,    3;
3,    5,   6;
6,    9,  11,  12;
8,   14,  17,  19,  20;
15,  23,  29,  32,  34,  35;
19,  34,  42,  48,  51,  53,  54;
32,  51,  66,  74,  80,  83,  85,  86;
42,  74,  93, 108, 116, 122, 125, 127, 128;
64, 106, 138, 157, 172, 180, 186, 189, 191, 192;
		

Crossrefs

Mirror of triangle A212000. Column 1 is A138137. Right border is A006128.

Formula

T(n,k) = A006128(n) - A006128(n-k).
T(n,k) = Sum_{j=n-k+1..n} A138137(j).

A212001 Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
.  S{1-5}     S{2-5}     S{3-5}     S{4-5}     S{5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  five       four       three      two        last
.  shells     shells     shells     shells     shell
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.  4+1        4+1        4+1        4+1          1
.  2+2+1      2+2+1      2+2+1      2+2+1          1
.  3+1+1      3+1+1      3+1+1        1+1          1
.  2+1+1+1    2+1+1+1      1+1+1        1+1          1
.  1+1+1+1+1    1+1+1+1      1+1+1        1+1          1
. ---------- ---------- ---------- ---------- ----------
.     35         34         31         26         15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4,     3;
9,     8,   5;
20,   19,  16,  11;
35,   34,  31,  26,  15;
66,   65,  62,  57,  46,  31;
105, 104, 101,  96,  85,  70,  39;
176, 175, 172, 167, 156, 141, 110,  71;
270, 269, 266, 261, 250, 235, 204, 165,  94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
		

Crossrefs

Mirror of triangle A212011. Column 1 is A066186. Right border is A138879.

Formula

T(n,k) = A066186(n) - A066186(k-1).
T(n,k) = Sum_{j=k..n} A138879(j).

A212011 Triangle read by rows: T(n,k) = sum of all parts of the last k shells of n.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 11, 16, 19, 20, 15, 26, 31, 34, 35, 31, 46, 57, 62, 65, 66, 39, 70, 85, 96, 101, 104, 105, 71, 110, 141, 156, 167, 172, 175, 176, 94, 165, 204, 235, 250, 261, 266, 269, 270, 150, 244, 315, 354, 385, 400, 411, 416, 419, 420, 196, 346
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of in each set:
--------------------------------------------------------
.  S{5}       S{4-5}     S{3-5}     S{2-5}     S{1-5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  last       two        three      four       five
.  shell      shells     shells     shells     shells
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.    1        4+1        4+1        4+1        4+1
.      1      2+2+1      2+2+1      2+2+1      2+2+1
.      1        1+1      3+1+1      3+1+1      3+1+1
.        1        1+1      1+1+1    2+1+1+1    2+1+1+1
.          1        1+1      1+1+1    1+1+1+1  1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
.     15         26         31         34         35
.
So row 5 lists 15, 26, 31, 34, 35.
.
Triangle begins:
1;
3,     4;
5,     8,   9;
11,   16,  19,  20;
15,   26,  31,  34,  35;
31,   46,  57,  62,  65,  66;
39,   70,  85,  96, 101, 104, 105;
71,  110, 141, 156, 167, 172, 175, 176;
94,  165, 204, 235, 250, 261, 266, 269, 270;
150, 244, 315, 354, 385, 400, 411, 416, 419, 420;
		

Crossrefs

Mirror of triangle A212001. Column 1 is A138879. Right border is A066186.

Formula

T(n,k) = A066186(n) - A066186(n-k).
T(n,k) = Sum_{j=n-k+1..n} A138879(j).

A211980 Triangle read by rows: T(n,k) = total number of regions in the last n-k+1 shells of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 3, 2, 7, 6, 5, 4, 2, 11, 10, 9, 8, 6, 4, 15, 14, 13, 12, 10, 8, 4, 22, 21, 20, 19, 17, 15, 11, 7, 30, 29, 28, 27, 25, 23, 19, 15, 8, 42, 41, 40, 39, 37, 35, 31, 27, 20, 12, 56, 55, 54, 53, 51, 49, 45, 41, 34, 26, 14, 77, 76, 75
Offset: 1

Views

Author

Omar E. Pol, Apr 27 2012

Keywords

Comments

The set of partitions of n contains n shells and A000041(n) regions. For the definition of "last section of n" see A135010. For the definition of "region of n" see A206437.

Examples

			Triangle begins:
1;
2,   1;
3,   2,  1;
5,   4,  3,  2;
7,   6,  5,  4,  2;
11, 10,  9,  8,  6,  4;
15, 14, 13, 12, 10,  8,  4;
22, 21, 20, 19, 17, 15, 11,  7;
30, 29, 28, 27, 25, 23, 19, 15,  8;
42, 41, 40, 39, 37, 35, 31, 27, 20, 12;
56, 55, 54, 53, 51, 49, 45, 41, 34, 26, 14;
77, 76, 75, 74, 72, 70, 66, 62, 55, 47, 35, 21;
		

Crossrefs

Mirror of triangle A211990. Column 1 is A000041, n >= 1. Right border is A187219.

Formula

T(n,1) = A000041(n).
T(n,k) = A000041(n) - A000041(k-1), 1
T(n,k) = Sum_{j=k..n} A187219(j).
Showing 1-4 of 4 results.