A212010
Triangle read by rows: T(n,k) = total number of parts in the last k shells of n.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 6, 9, 11, 12, 8, 14, 17, 19, 20, 15, 23, 29, 32, 34, 35, 19, 34, 42, 48, 51, 53, 54, 32, 51, 66, 74, 80, 83, 85, 86, 42, 74, 93, 108, 116, 122, 125, 127, 128, 64, 106, 138, 157, 172, 180, 186, 189, 191, 192, 83, 147, 189, 221, 240
Offset: 1
For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
. S{5} S{4-5} S{3-5} S{2-5} S{1-5}
--------------------------------------------------------
. The Last Last Last The
. last two three four five
. shell shells shells shells shells
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 1 4+1 4+1 4+1 4+1
. 1 2+2+1 2+2+1 2+2+1 2+2+1
. 1 1+1 3+1+1 3+1+1 3+1+1
. 1 1+1 1+1+1 2+1+1+1 2+1+1+1
. 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
. 8 14 17 19 20
.
So row 5 lists 8, 14, 17, 19, 20.
.
Triangle begins:
1;
2, 3;
3, 5, 6;
6, 9, 11, 12;
8, 14, 17, 19, 20;
15, 23, 29, 32, 34, 35;
19, 34, 42, 48, 51, 53, 54;
32, 51, 66, 74, 80, 83, 85, 86;
42, 74, 93, 108, 116, 122, 125, 127, 128;
64, 106, 138, 157, 172, 180, 186, 189, 191, 192;
A212000
Triangle read by rows: T(n,k) = total number of parts in the last n-k+1 shells of n.
Original entry on oeis.org
1, 3, 2, 6, 5, 3, 12, 11, 9, 6, 20, 19, 17, 14, 8, 35, 34, 32, 29, 23, 15, 54, 53, 51, 48, 42, 34, 19, 86, 85, 83, 80, 74, 66, 51, 32, 128, 127, 125, 122, 116, 108, 93, 74, 42, 192, 191, 189, 186, 180, 172, 157, 138, 106, 64, 275, 274, 272, 269, 263, 255, 240
Offset: 1
For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
. S{1-5} S{2-5} S{3-5} S{4-5} S{5}
--------------------------------------------------------
. The Last Last Last The
. five four three two last
. shells shells shells shells shell
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 4+1 4+1 4+1 4+1 1
. 2+2+1 2+2+1 2+2+1 2+2+1 1
. 3+1+1 3+1+1 3+1+1 1+1 1
. 2+1+1+1 2+1+1+1 1+1+1 1+1 1
. 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1
. ---------- ---------- ---------- ---------- ----------
. 20 19 17 14 8
.
So row 5 lists 20, 19, 17, 14, 8.
.
Triangle begins:
1;
3, 2;
6, 5, 3;
12, 11, 9, 6;
20, 19, 17, 14, 8;
35, 34, 32, 29, 23, 15;
54, 53, 51, 48, 42, 34, 19;
86, 85, 83, 80, 74, 66, 51, 32;
128, 127, 125, 122, 116, 108, 93, 74, 42;
192, 191, 189, 186, 180, 172, 157, 138, 106, 64;
A212001
Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.
Original entry on oeis.org
1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
Offset: 1
For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
. S{1-5} S{2-5} S{3-5} S{4-5} S{5}
--------------------------------------------------------
. The Last Last Last The
. five four three two last
. shells shells shells shells shell
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 4+1 4+1 4+1 4+1 1
. 2+2+1 2+2+1 2+2+1 2+2+1 1
. 3+1+1 3+1+1 3+1+1 1+1 1
. 2+1+1+1 2+1+1+1 1+1+1 1+1 1
. 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1
. ---------- ---------- ---------- ---------- ----------
. 35 34 31 26 15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4, 3;
9, 8, 5;
20, 19, 16, 11;
35, 34, 31, 26, 15;
66, 65, 62, 57, 46, 31;
105, 104, 101, 96, 85, 70, 39;
176, 175, 172, 167, 156, 141, 110, 71;
270, 269, 266, 261, 250, 235, 204, 165, 94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
A211990
Triangle read by rows: T(n,k) = total number of regions in the last k shells of n.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 2, 3, 4, 5, 2, 4, 5, 6, 7, 4, 6, 8, 9, 10, 11, 4, 8, 10, 12, 13, 14, 15, 7, 11, 15, 17, 19, 20, 21, 22, 8, 15, 19, 23, 25, 27, 28, 29, 30, 12, 20, 27, 31, 35, 37, 39, 40, 41, 42, 14, 26, 34, 41, 45, 49, 51, 53, 54, 55, 56, 21, 35, 47
Offset: 1
For n = 5 and k = 2 we have that the 4th shell of 5 contains two regions: [2] and [4,2,1,1,1]. Then we can see that the 5th shell of 5 contains two regions: [3] and [5,2,1,1,1,1,1]. Therefore the total number of regions in the last two shells of 5 is T(5,2) = 2+2 = 4 (see illustration in the link section).
Triangle begins:
1;
1, 2;
1, 2, 3;
2, 3, 4, 5;
2, 4, 5, 6, 7;
4, 6, 8, 9, 10, 11;
4, 8, 10, 12, 13, 14, 15;
7, 11, 15, 17, 19, 20, 21, 22;
8, 15, 19, 23, 25, 27, 28, 29, 30;
12, 20, 27, 31, 35, 37, 39, 40, 41, 42;
14, 26, 34, 41, 45, 49, 51, 53, 54, 55, 56;
21, 35, 47, 55, 62, 66, 70, 72, 74, 75, 76, 77;
Showing 1-4 of 4 results.
Comments